Wait a second!
More handpicked essays just for you.
More handpicked essays just for you.
Don’t take our word for it - see why 10 million students trust us with their essay needs.
Recommended: Quiz on gram staining
In microbiology, bacterial identification relies on isolating individual bacterial colonies of different species. The streaking for isolation technique is a tool used to obtaining a pure culture. The technique consists of taking an original inoculum that contains a mixed culture and spreading the bacteria into four quadrants on a solid medium. The purpose of spreading the mixed culture on a petri dish is to reduce the number of bacteria in each subsequent quadrant to one parent cell of each type of bacteria. One isolated bacterial is called a colony; which consist of thousands or even millions of individual replicates of the original parent cell with the same DNA. Identification of these parent cell will be isolated further into individual bacterial colonies used in subculturing. …show more content…
One type of bacteria from the mixed culture plate is placed on a separate plate of media for testing. That one parent cell will multiply itself through a process called binary fission producing bacteria with the same DNA. The pure culture will be used for further study of the bacteria. The unknown species KK appeared to contain a pure culture because all of the colonies on the petri dish were similar in color and shape after incubation.
Gram stain is one of the most important stains in determine the morphology and cell wall composition of the bacteria. The stain is positively charged and is attracted to the negatively charged surface of the bacteria; which produces the purple or red color of the gram stain. The gram stain results of unknown KK revealed that the bacteria species were gram-negative, red/pink, and rod shaped. Therefore, a MacConkey agar test will be conducted in order to differentiate two classes of gram negative
I identified the genus and species of an unknown bacterial culture, #16, and I applied the following knowledge of morphologic, cultural and metabolic characteristics of the unknown microorganism according to the laboratory manual as well as my class notes and power point print outs. I was given an incubated agar slant labeled #16 and a rack of different tests to either examine or perform myself; the tests are as follows: Gram Stain; Nutrient Gelatin Test; Carbohydrate Fermentation; Dextrose, Lactose and Sucrose; IMVIC tests; Citrate, Indole, Mythel-Red and Vogues Proskauer test; as well as a Urease and TSI Test. Materials and Methods/Results Upon receiving the Microorganism (M.O.) #16, I prepared a slide by cleaning and drying it. Then, using a bottle of water I placed a sterile drop of water on the slide and used an inoculating loop, flame sterilized, I took a small sample of the unknown growth in my agar slant and smeared it onto the slide in a dime sized circle and then heat fixed it for ten minutes.
After 5 days of growth each slant was tested using the gram staining technique to confirm the complete isolation of the bacteria. Both isolations were completely successful. Then each sample of bacteria was subjected to a series of tests for identification.
The Gram positive bacteria has been nicknamed Posi. The Gram positive species’ morphology includes having an opaque opacity with a smooth margin. The moisture content of the Gram positive species is shiny and the pigmentation is gold. The Gram positive species grows at an optimal temperature of 37°C. The shape of the Gram positive species is a cocci, with an arrangement of grapelike clusters. The Gram positive species’ size ranges from .5-1.5 µm. Oxygen requirement of the Gram positive species is facultative, and has complete lysis of red blood cells. All results are summarized in Table
...et light. If the LAA plate glows green under exposure to ultraviolet light, then we can conclude that our unknown insert piece of DNA would be the kan gene. If it does not glow green under exposure to ultraviolet light, then then we streak the colony from our LAA plate onto the LAC plate using a sterile glass spreader. When the LAC plate is dray, we place it upside down in the microfuge rack so that it can be incubated at 37 ºC. Incubation at 37 ºC will allow the transformed bacterial cells to grow. If we see bacterial growth on the LA plate containing chloramphenicol, we can conclude that our unknown insert piece of DNA would be the cat gene, since the cat gene is resistant to chloramphenicol. Afterwards, we then grab the microfuge tube labeled NP and repeat the aforementioned steps shown above pertaining to the LA plates. This would be considered our control.
The purpose of this study is to identify an unknown bacterium from a mixed culture, by conducting different biochemical tests. Bacteria are an integral part of our ecosystem. They can be found anywhere and identifying them becomes crucial to understanding their characteristics and their effects on other living things, especially humans. Biochemical testing helps us identify the microorganism present with great accuracy. The tests used in this experiment are rudimentary but are fundamental starting points for tests used in medical labs and helps students attain a better understanding of how tests are conducted in a real lab setting. The first step in this process is to use gram-staining technique to narrow down the unknown bacteria into one of the two big domains; gram-negative and gram-positive. Once the gram type is identified, biochemical tests are conducted to narrow down the specific bacterial species. These biochemical tests are process of elimination that relies on the bacteria’s ability to breakdown certain kinds of food sources, their respiratory abilities and other biochemical conditions found in nature.
The results of the gram stain test were cocci and purple. This indicated that the unknown bacteria were gram positive. The gram stain test eliminated Escherichia coli, Klebsiella pneumonia, Salmonella enterica, and Yersinia enterocolitica as choices because these bacteria are gram negative. Next a Blood Agar plate was used because in order to do a MSA or a Catalase test there needs to be a colony of the bacteria. The result of the Blood Agar plate was nonhemolytic.
Thorough analysis of the graph displayed enough evidence suggesting that an increase in substrate concentration will increase the height of bubbles until it reaches the optimum amount of substrate concentration, resulting in a plateau in the graphs (figure 2). Hence; supported the hypothesis.
The purpose of this laboratory is to learn about cultural, morphological, and biochemical characteristics that are used in identifying bacterial isolates. Besides identifying the unknown culture, students also gain an understanding of the process of identification and the techniques and theory behind the process. Experiments such as gram stain, negative stain, endospore and other important tests in identifying unknown bacteria are performed. Various chemical tests were done and the results were carefully determined to identify the unknown bacteria. First session of lab started of by the selection of an unknown bacterium then inoculations of 2 tryptic soy gar (TSA) slants, 1 nutrient broth (TSB), 1 nutrient gelatin deep, 1 motility
The eighteenth exercise of the laboratory manual titled Unknown Identification and Bergey’s Manual is an experiment to identify an unknown bacterium. In this exercise, a student must randomly choose a numbered bacterium available to the class. The keys in Appendix H, located on the last pages of the book, are the major helpful tools in this exercise because it provides completed steps of tests that needs to be performed in order to distinguish certain bacteria. This means that in this exercise, various types of tests and techniques must be performed to identify the chosen unknown bacterium. The unknown bacterium that I selected was number thirty-nine in which I discovered as the Bacillus megaterium after conducting several tests.
I was given unknown organism #14, in order to find out what organism I had, I had to perform several different biochemical tests to identify it. Starting with the Gram stain test, which is performed to differentiate Gram-positive and Gram-negative cells. After staining, when observed through the microscope Gram-positive cells are a purple color with thick peptidoglycan cell walls. Gram-negative cells are a pinkish/red color with thinner cell walls. (handout G. s.) My organism was observed to be pinkish rod shaped meaning it is Gram-negative bacteria.
The purpose of this project was to identify unknown bacteria species from a mixed culture. The two unknown species were initially plated onto Tryptic Soy Agar (TSA), Eosin Methylene Blue (EMB), Mannitol Salt Agar (MSA), and blood agar plates to distinguish between the two different bacteria using colony size, color, shape, and growth characteristics. By identifying and inoculating the differing types of colonies, the two unknown bacteria were purified and able to be tested
The objective of this lab was to identify unknown bacteria culture by using various differential tests. There are many reasons for knowing the identity of microorganisms including to find the correct antibiotic to treat infections the bacteria may have caused. All the methods and techniques used to identify unknown bacterium #79 was learned in the microbiology laboratory.
In our Biology Lab we did a laboratory experiment on fermentation, alcohol fermentation to be exact. Alcohol fermentation is a type of fermentation that produces the alcohol ethanol and CO2. In the experiment we estimated the rate of alcohol fermentation by measuring the rate of CO2 production. Both glycolysis and fermentation consist of a series of chemical reactions, each of which is catalyzed by a specific enzyme. Two of the tables substituted some of the solution glucose for two different types of solutions. They are as followed, Table #5 substituted glucose for sucrose and Table #6 substituted the glucose for pH4. The equation for alcohol fermentation consists of 6 Carbons 12 Hydrogens 6 Oxygen to produce 2 pyruvates plus 2 ATP then finally the final reaction will be 2 CO2 plus Ethanol. In the class our controlled numbers were at Table #1; their table had 15 mL Glucose, 10 mL RO water, and 10 mL of yeast which then they placed in an incubator at 37 degrees Celsius. We each then measured our own table’s fermentation flasks every 15 mins for an hour to compare to Table #1’s controlled numbers. At
Microbiology is the study of microscopic organisms and has numerous applications in medicine, virulogy, immunology and more since the implementation of it in the lat 16th century. There are many microorganisms in the world habituating all kinds of conditions and locations, and the primary goal of microbiology to not only to identify but also characterize these populations. In the past this has been carried out by direct clonal culturing given the ease with which discoveries could be made about cultured organisms. This subsequently established a precedence for culture dependent isolations in the lab (1). However, as more evidence arose suggesting that this method only captures a small breadth of the microbial community, a new methodology has started to gain momentum. Instead of solely focusing on identifying lab-cultured microorganisms individually through phenotypic analysis of biochemical and physiological test results, samples from environments are being evaluated en masse and then identified successfully using 16S RNA sequence and phylogentic analysis (2). This new method of analysis presents to the world of microbiology not only vast room for expansion, but room for even greater medical and scientific advancements as well.
To study the variation gene expression, we used Vibrio parahaemolyticus, calcium, centrifuge, spectrophotometer, mini-protean unit, SDS-PAGE, and UV transilluminator. During the first week of the procedure, you must come in around 24 hours before actually starting your procedure so you have adequate time for bacterial growth. The process consists of multiple steps of adding different chemicals to your bacteria and centrifuge it after add a chemical each time for different lengths of time. After all of the steps, I added 209 mL of LSB (Laemelli Sample Buffer) so that all test runs have equal amount of cells. Final step of this week is freezing our samples. While week two consisted of using our sample from previous week to make a gel plate that will go into the mini-protean unit. The mini-protean unit will distribute the vibrio in a way we can read its gene expression. After the gel is created in the mini-protean unit you must stain and de-stain the gel so it can be taken a picture of. To take the picture we use a UV transilluminator. For the standard procedure, reference (Department of Biology.