Wait a second!
More handpicked essays just for you.
More handpicked essays just for you.
Bacteria quizz
Bacteria research papers
Don’t take our word for it - see why 10 million students trust us with their essay needs.
Recommended: Bacteria quizz
A. Introduction:
The purpose of this laboratory is to learn about cultural, morphological, and biochemical characteristics that are used in identifying bacterial isolates. Besides identifying the unknown culture, students also gain an understanding of the process of identification and the techniques and theory behind the process. Experiments such as gram stain, negative stain, endospore and other important tests in identifying unknown bacteria are performed. Various chemical tests were done and the results were carefully determined to identify the unknown bacteria. First session of lab started of by the selection of an unknown bacterium then inoculations of 2 tryptic soy gar (TSA) slants, 1 nutrient broth (TSB), 1 nutrient gelatin deep, 1 motility
…show more content…
agar deep (semi-solid medium), 1 FTM tube, 1 TSA plate. The next lab session we examined the results of our inoculations and began the next set of inoculations which included, 1 glucose tube, 1 lactose tube, 1 mannitol tube, 2 MR-VP broth tubes, 1 Simmon’s citrate tube, 1 nitrate broth tube, 2 O/F glucose (one with oil one without), 1 starch agar plate, 1 skim milk agar plate, 1 spirit blue agar plate, 1 urease slant, and 1 phenylalanine agar. During the next few weeks I began to examine all my test results and compared with the lab manual’s charts to narrow down my options and determine the identity of my unknown bacterium. B. Materials and Methods: All materials and methods used in this laboratory are detailed in the BIO 2710 Microbiology Laboratory Manual. C. Results: The results from the lab exercises are presented in the attached Descriptive Chart. Also attached is a flow chart, of the main tests/experiments that helped me determine my specie’s identity. The main experiments included the gram stain, which determined whether my bacterium was a positive or negative stain, and then the primary tests were nitrate, motility, glucose, citrate, and FTM. Unknown letter V was Micrococcus luteus, gram-positive cocci, grew optimally at 25 and formed round yellow colonies. Growth of the FTM tube was consistent with the O/F glucose test (obligate aerobe). It was non-motile, the nitrate test was negative as were the glucose and citrate. My results all supported my conclusion; some students also swapped my unknown bacteria to use it for various test, since they suspected we had the same bacterium but some of their test results did not support their suspicion and they wanted to make sure that their bacteria were not just contaminated. D. Discussion: The identity of unknown letter V was Micrococcus luteus I began by choosing unknown letter V and inoculating two tryptic soy agar (TSA) slants and incubating both of the slants at 25 °C, because my professor instructed me to do so, instead of incubating one slant at 37 °C and one at 25 °C.
I also inoculated a tryptic soy broth (TSB), a nutrient gelatin deep, a motility agar deep, a fluid thioglycollate medium (FTM) tube, and a TSA plate with my unknown culture. All of these inoculated media were incubated until the next class period (about 48 hours). Then when I came to class most of my inoculated tubes and my streak plate appeared to have growth. The next step I took was making a gram stain to determine the gram reaction and cellular morphology of my unknown. I used my working slant to do this, after careful examination of the gram stain, I learned that my unknown was a gram-positive bacterium. I then preceded by making a negative stain to see the size of the cells of my unknown bacteria. The cell shape was cocci and the cells occurred in clusters of tetrads. After discovering that my unknown bacteria was gram-positive cocci, I turned to page 207 of the lab manual to narrow down my options, there was only four out of the gram-positive list that were
cocci. After doing the gram stain, I looked at the flow chart (figure 42.1) on page 194 of the laboratory manual, which demonstrated the need to do the spore stain for my specific unknown. I then discovered that my bacterium is non-spore forming and since the cell’s shape was cocci and not rods there was no need to do the acid-fast stain. In the next class period, I removed my inoculations from the incubator and studied them. The TSA plate had significant growth that looked yellow, round, smooth. The TSB tube was turbid with some sediment on the bottom. The agar slant also had growth that was white and spread out. Next I decided to figure out the oxygen requirements. The FTM tube looked like my unknown bacterium was obligate aerobe. To double check this, I used the O/F glucose tests to see if my unknown bacteria can grow by respiratory means if oxygen is present and if it can also switch metabolic gears in anaerobic conditions and grow by fermentation. The results of the O/F glucose test showed that my unknown bacterium is an obligate aerobe. After seeing the results of the O/F glucose tests, I carried out specific fermentation tests: Durham tube sugar fermentations, mixed- acid fermentation (methyl red test), 2,3- butanediol fermentation (Voges-Proskauer test), litmus milk, and the citrate test. I inoculated the Durham tubes of glucose, lactose, and mannitol with my unknown organism and all three sugars did not produce gas. The mixed acid fermentation test showed negative results for my unknown. The test for 2,3 butanediol fermentation had positive results. The litmus milk test should no change. The citrate test indicated that my unknown exhibits no citrate utilization. At this point, I turned to figure 39.13 on page 208 of the laboratory manual and followed the flow chart down with my results from the different tests. This told me that my unknown was most likely Micrococcus Luteus. All the tests that I had done so far all supported that my unknown bacterium was Micrococcus luteus. I decided to do the Nitrate test to be sure that it was Micrococcus luteus and not Micrococcus roseus since they are very similar. The result of the Nitrate test was negative which then confirmed that my unknown bacterium was Micrococcus luteus and not Micrococcus roseus. After obtaining all my results, I referred to the Bergey’s Manual of systematic Bacteriology and turned to tables 12.3-12.4 on page1006-1007. I compared all the test results I obtained and found that the table in the manual also supported my conclusion that my unknown bacteria was Micrococcus luteus.
I identified the genus and species of an unknown bacterial culture, #16, and I applied the following knowledge of morphologic, cultural and metabolic characteristics of the unknown microorganism according to the laboratory manual as well as my class notes and power point print outs. I was given an incubated agar slant labeled #16 and a rack of different tests to either examine or perform myself; the tests are as follows: Gram Stain; Nutrient Gelatin Test; Carbohydrate Fermentation; Dextrose, Lactose and Sucrose; IMVIC tests; Citrate, Indole, Mythel-Red and Vogues Proskauer test; as well as a Urease and TSI Test. Materials and Methods/Results Upon receiving the Microorganism (M.O.) #16, I prepared a slide by cleaning and drying it. Then, using a bottle of water I placed a sterile drop of water on the slide and used an inoculating loop, flame sterilized, I took a small sample of the unknown growth in my agar slant and smeared it onto the slide in a dime sized circle and then heat fixed it for ten minutes.
Solid A was identified to be sodium chloride, solid B was identified to be sucrose, and Solid C was identified to be corn starch. Within the Information Chart – Mystery White Solid Lab there are results that distinguishes itself from the other 4 experimental results within each test. Such as: the high conductivity and high melting point of sodium chloride, and the iodine reaction of corn starch. Solid A is an ionic compound due to its high melting point and high electrical conductivity (7), within the Information Chart – Mystery White Solid Lab there is only one ionic compound which is sodium chloride, with the test results of Solid A, it can be concluded that is a sodium chloride. Solid B was identified as sucrose due to its low electrical
1 / 3 BIO3001 Shinhye Jeon (Heather) Professor Wahlert November 21, 2017 Identifying of Spores Belonging to the Division Pterophyta by Utilizing Phylogenetical method 1. Abstract
The purpose of the Unknown White Compound Lab was to identify the unknown compound by performing several experiments. Conducting a solubility test, flame test, pH paper test, ion test, pH probe test, conductivity probe test, and synthesizing the compound will accurately identified the unknown compound. In order to narrow down the possible compounds, the solubility test was used to determine that the compound was soluble in water. Next, the flame test was used to compare the unknown compound to other known compounds such as potassium chloride, sodium chloride, and calcium carbonate. The flame test concluded that the cation in the unknown compound was potassium. Following, pH paper was used to determine the compound to be neutral and slightly
Sordaria fimicola is a species of microscopic fungus that is an Ascomycete and are used to test for genetic variation in the lab setting (Sordaria fimicola: A Fungus used in Genetics, Volk). These organisms are what are called model organisms, or species that has been widely studied usually because it is easy to maintain and breed in a laboratory setting and has particular experimental advantages (Sordaria fimicola, Volk). S. fimicola, because it is in the Ascomycota phylum, have a distinguishing reproductive structure called the ascus, which is surrounded by the perithecium. This cylindrical sac-like structure houses 8 haploid spores; created through meiosis to produce 4 haploid spores and then mitosis to make 8 (Lab Manual, pg. 59-68). Based on the genotype they will vary in order and color. There are 3 different ratios that can arise from the 8 ascospores: 4:4, 2:2:2:2, and 2:4:2 (black/wild type and tan coloration). The 4:4 ratio suggests that no crossing over had occurred because there is no difference in order of the color parents that were mated. The two other ratios suggest genetic recombination, or crossing over, because of the
Forensic Science Introduction: Someone in a restaurant has suddenly fallen ill and a mystery powder has been discovered with the victim. As the chief investigator, your duty is to identify the mystery substance through a lab. In this lab, it will consist of five known compounds and one unknown compound. Your job is to distinguish which one out of the five substances is the mystery powder. To figure out the mystery matter you will have to compare their physical and chemical properties and match them with the appropriate compound.
After 5 days of growth each slant was tested using the gram staining technique to confirm the complete isolation of the bacteria. Both isolations were completely successful. Then each sample of bacteria was subjected to a series of tests for identification.
Streak plate technique was used to isolate pure culture for each bacteria (2). The Gram stain was used to determine Gram reaction and morphology of each bacteria (2) Selective and differential media such as, salt agar, MacConkey agar and blood agar were used for bacterial identification (2). Gelatin deeps were inoculated to detect production of gelatinase (2). Starch Agar plate were inoculated to detect amylase (2). Ocular reticle used to determine bacteria size (2). Motility deeps were inoculated to detect motility on bacteria (2). Thioglycollate broth used to determine oxygen requirements (2). Carbohydrate fermentation
The purpose of this study is to identify an unknown bacterium from a mixed culture, by conducting different biochemical tests. Bacteria are an integral part of our ecosystem. They can be found anywhere and identifying them becomes crucial to understanding their characteristics and their effects on other living things, especially humans. Biochemical testing helps us identify the microorganism present with great accuracy. The tests used in this experiment are rudimentary but are fundamental starting points for tests used in medical labs and helps students attain a better understanding of how tests are conducted in a real lab setting. The first step in this process is to use gram-staining technique to narrow down the unknown bacteria into one of the two big domains; gram-negative and gram-positive. Once the gram type is identified, biochemical tests are conducted to narrow down the specific bacterial species. These biochemical tests are process of elimination that relies on the bacteria’s ability to breakdown certain kinds of food sources, their respiratory abilities and other biochemical conditions found in nature.
The Gram stain is a system used to characterize bacteria based on the structural characteristics of their cell walls. A Gram-positive cell will stain purple if cell walls are thick and a Gram-negative cell wall appears pink. Most bacteria can be classified as belonging to one of four groups (Gram-positive cocci, Gram-positive bacilli, Gram-negative cocci, and Gram-negative bacilli) (Phenotypic analysis. (n.d.).
What do bacteria need to grow? For bacteria to grow the most typical thing that they like ate a warm and moist environment, but that is not all that they like. Bacteria also like and environment with a PH that is normal or close to a human PH and bacteria also like an oxygen rich environment. The places that could be common to find bacteria in a building are a keyboard, a water fountain, and restrooms. A keyboard is a common place for bacteria because it is being touched constantly with hands when people type and hands are warm, so bacteria like them. The water fountain is another place that is common for bacteria to grow because people's warm hands are touching it and also it has water, which causes it to be moist. The last place that bacteria will we commonly found in buildings are restrooms. The bacteria like restrooms because many people are in then and also there is a lot of water in them.
In the last decade, the number of prescriptions for antibiotics has increases. Even though, antibiotics are helpful, an excess amount of antibiotics can be dangerous. Quite often antibiotics are wrongly prescribed to cure viruses when they are meant to target bacteria. Antibiotics are a type of medicine that is prone to kill microorganisms, or bacteria. By examining the PBS documentary Hunting the Nightmare Bacteria and the article “U.S. government taps GlaxoSmithKline for New Antibiotics” by Ben Hirschler as well as a few other articles can help depict the problem that is of doctors prescribing antibiotics wrongly or excessively, which can led to becoming harmful to the body.
The purpose of this project was to identify unknown bacteria species from a mixed culture. The two unknown species were initially plated onto Tryptic Soy Agar (TSA), Eosin Methylene Blue (EMB), Mannitol Salt Agar (MSA), and blood agar plates to distinguish between the two different bacteria using colony size, color, shape, and growth characteristics. By identifying and inoculating the differing types of colonies, the two unknown bacteria were purified and able to be tested
Bacterial cells, like plant cells, are surrounded by a cell wall. However, bacterial cell walls are made up of polysaccharide chains linked to amino acids, while plant cell walls are made up of cellulose, which contains no amino acids. Many bacteria secrete a slimy capsule around the outside of the cell wall. The capsule provides additional protection for the cell. Many of the bacteria that cause diseases in animals are surrounded by a capsule. The capsule prevents the white blood cells and antibodies from destroying the invading bacterium. Inside the capsule and the cell wall is the cell membrane. In aerobic bacteria, the reactions of cellular respiration take place on fingerlike infoldings of the cell membrane. Ribosomes are scattered throughout the cytoplasm, and the DNA is generally found in the center of the cell. Many bacilli and spirilla have flagella, which are used for locomotion in water. A few types of bacteria that lack flagella move by gliding on a surface. However, the mechanism of this gliding motion is unknown. Most bacteria are aerobic, they require free oxygen to carry on cellular respiration. Some bacteria, called facultatibe anaerobes can live in either the presence or absence of free oxygen. They obtain energy either by aerobic respiration when oxygen is present or by fermentation when oxygen is absent. Still other bacteria cannot live in the presence of oxygen. These are called obligate anaerobes. Such bacteria obtain energy only fermentation. Through fermentation, different groups of bacteria produce a wide variety of organic compounds. Besides ethyl alcohol and lactic acid, bacterial fermentation can produce acetic acid, acetone, butyl alcohol, glycol, butyric acid, propionic acid, and methane, the main component of natural gas. Most bacteria are heterotrophic bacteria are either saprophytes or parasites. Saprophytes feed on the remains of dead plants and animals, and ordinarily do not cause disease. They release digestive enzymes onto the organic matter. The enzymes breakdown the large food molecules into smaller molecules, which are absorbed by the bacterial cells. Parasites live on or in living organisms, and may cause disease. A few types of bacteria are Autotrophic, they can synthesize the organic nutrients they require from inorganic substances. Autotrophic bacteria are either photosynthetic or Chemosynthetic. The photosynthetic bacteria contain chlorophyll that are different from the plant chlorophyll. In bacterial photosynthesis, hydrogen is obtained by the splitting of compounds other than water.
The abnormal presence of bacterial growth can be inspected under a microscope. If the organism inspected is not the bacteria used in the experiment, it means that the growth of the bacterial culture investigated is absent. By using this method, contamination by foreign substances in the surrounding air can be ruled out and the results would be more accurate.