Experimental Design : Identifying An Unknown Insert

2195 Words5 Pages

Experimental Design #3: Identifying an Unknown Insert
Purpose:
The purpose of this experiment is to identify an unknown insert DNA by using plasmid DNA as a vector to duplicate the unknown insert DNA. The bacteria will then be transformed by having it take in the plasmid DNA, which will allow us to identify our unknown insert as either the cat gene or the kan gene.
Experimental Design:
The two modes of analysis that will be used to identify an unknown insert piece of DNA would be plating the transformation cells onto LA plates that have either ampicillin or chloramphenicol and PCR. We will use the PCR thermocycler to denature the restriction enzymes that were specifically used to assimilate the vector DNA. It is important to use the PCR thermocycler because denaturation of the restriction enzyme will prevent the restriction enzyme from cutting the vector DNA, after the insert DNA has assimilated to the vector DNA. After the addition of specific primers that complement the base pair to its corresponding target strand, PCR will be used. Subsequently, Taq polymerase will be used to determine whether the insert DNA has been properly assimilated to the vector DNA. Within this specific situation, the target strand will be the insert DNA. After we let the PCR thermocycler run for approximately 2 ½ hours, we will then put our PCR products in the gel and run the gel to completion. After the gel has run to completion, we will then take a photograph of the gel using the UV transilluminator with the assistance of our TA. If the insert DNA was properly assimilated to the vector DNA, then our corresponding gel photo would have one band. After the cells have been transformed, we would g...

... middle of paper ...

...et light. If the LAA plate glows green under exposure to ultraviolet light, then we can conclude that our unknown insert piece of DNA would be the kan gene. If it does not glow green under exposure to ultraviolet light, then then we streak the colony from our LAA plate onto the LAC plate using a sterile glass spreader. When the LAC plate is dray, we place it upside down in the microfuge rack so that it can be incubated at 37 ºC. Incubation at 37 ºC will allow the transformed bacterial cells to grow. If we see bacterial growth on the LA plate containing chloramphenicol, we can conclude that our unknown insert piece of DNA would be the cat gene, since the cat gene is resistant to chloramphenicol. Afterwards, we then grab the microfuge tube labeled NP and repeat the aforementioned steps shown above pertaining to the LA plates. This would be considered our control.

More about Experimental Design : Identifying An Unknown Insert

Open Document