Wait a second!
More handpicked essays just for you.
More handpicked essays just for you.
Don’t take our word for it - see why 10 million students trust us with their essay needs.
Recommended: Gram staining
After the end of the experiment the unknown 10 sample was Staphylococcus epidermidis. Came to this conclusion by first beginning with a Gram Stain test. By doing this test it would be easier to determine which route to take on the man made flow chart. Gram positive and gram negative bacteria have a set of different tests to help determine the unknown bacterium. Based on the different tests that were conducted in lab during the semester it was determined that the blood agar, MSA, and catalase test are used for gram positive bacteria while Macconkey, EMB, TSI, and citrate tests are used for gram negative bacteria. The results of the gram stain test were cocci and purple. This indicated that the unknown bacteria were gram positive. The gram stain test eliminated Escherichia coli, Klebsiella pneumonia, Salmonella enterica, and Yersinia enterocolitica as choices because these bacteria are gram negative. Next a Blood Agar plate was used because in order to do a MSA or a Catalase test there needs to be a colony of the bacteria. The result of the Blood Agar plate was nonhemolytic. This indicated that there was no lysis of red blood cells. By looking at the plate there was no change in the medium. Next an MSA test was done and the results showed that there was growth but no color change. This illustrates that the unkown bacteria could tolerate high salt concentration but not ferment mannitol. The MSA plate eliminated Streptococcus pneumonia and Streptococcus pyogenes as choices since the bacteria can’t grow in high salt concentration. Staphylococcus aureus could be eliminated because not only did the unknown bacteria grow but also it didn’t change color to yellow. Lastly a Catalase test was done by taking a colony from the Blood Agar plate...
... middle of paper ...
...imary stain and not pick up the counterstain. Other human errors could have affected the results such as not inverting the plate before putting it into incubation would not allow for bacterial growth. Not pipetting the tube up and down to mix the bacteria that settled at the bottom of the tube before starting the Gram Stain would not allow for an accurate reading because there wouldn’t be many bacteria on the slide. Passing the slide over the bunsen burner too many times, hence killing the bacteria and not allowing for a Gram Stain. If this experiment had to be redone, one improvement would be to allow for more that one plate without a point deduction. Unexpected human errors might interfere with person’s results. Having more than one plate will allow for more accuracy in the results or allow for a person to determine were they went wrong during the experiment.
I identified the genus and species of an unknown bacterial culture, #16, and I applied the following knowledge of morphologic, cultural and metabolic characteristics of the unknown microorganism according to the laboratory manual as well as my class notes and power point print outs. I was given an incubated agar slant labeled #16 and a rack of different tests to either examine or perform myself; the tests are as follows: Gram Stain; Nutrient Gelatin Test; Carbohydrate Fermentation; Dextrose, Lactose and Sucrose; IMVIC tests; Citrate, Indole, Mythel-Red and Vogues Proskauer test; as well as a Urease and TSI Test. Materials and Methods/Results Upon receiving the Microorganism (M.O.) #16, I prepared a slide by cleaning and drying it. Then, using a bottle of water I placed a sterile drop of water on the slide and used an inoculating loop, flame sterilized, I took a small sample of the unknown growth in my agar slant and smeared it onto the slide in a dime sized circle and then heat fixed it for ten minutes.
Each test that was used in the lab for the unknown bacteria had been performed on many different bacteria and shown that each test has different results depending on the bacteria given. The first test, the Gram stain, confirmed that the unknown bacterium was a gram negative bacilli. After performing the remainder of the tests and comparing them to the twelve negative bacteria that it could be out of it was basically a process of elimination. Basically looking at all the results and seeing which tests separated positive verses negative results the most. After reviewing all of the tests the first test that stuck out besides the gram stain was the lactose fermentation, followed by the citrate utilization test and then by the indole test. The lactose fermentation test eliminated seven of the 12 bacteria. From the five bacteria left the citrate utilization test eliminated who more of the bacteria, and last the indole test eliminated two of the three bacteria left leaving only one bacterium left. After comparing the results to the results of the 12 tests and separating which tests were positive and negative for each it was obvious that the bacteria had to be Shigella
Table 6 shows the results of the biochemical tests. The isolate can obtain its energy by means of aerobic respiration but not fermentation. In the Oxidation-Fermentation test, a yellow color change was produced only under both aerobic conditions, indicating that the EI can oxidize glucose to produce acidic products. In addition to glucose, the EI can also utilize lactose and sucrose, and this deduction is based on the fact that the color of the test medium broth changed to yellow in all three Phenol Red Broth tests. These results are further supported by the results of the Triple Sugar Iron Agar test. Although the EI does perform fermentation of these three carbohydrates, it appears that this bacterium cannot perform mixed acid fermentation nor 2,3-butanediol fermentation due to the lack of color change in Methyl Red and Vogues-Proskauer
Unknown 10b is Staphylococcus epidermidis. According to Bergey’s Manual Staphylococcus bacteria are gram positive spherical cells that occur singly, in pairs or in irregular clusters. Unknown 10b was gram positive, spherical and occurred in clusters. Bergey’s Manual also says the bacteria grow well in high salt concentrations. Unknown 10b grew well on the mannitol salt agar. The optimum growing temperature is 30-37 degrees Celsius (Bergey’s Manual). Unknown 10b grew best at 37 degrees Celsius. The lab manual and past lab results confirmed all other test results. Unknown 10b was only able to use gamma lysis, it was unable to ferment mannitol and had no coagulase activity. When comparing to past labs it is confirmed that Unknown 10b is Staphylococcus epidermidis.
Streak plate technique was used to isolate pure culture for each bacteria (2). The Gram stain was used to determine Gram reaction and morphology of each bacteria (2) Selective and differential media such as, salt agar, MacConkey agar and blood agar were used for bacterial identification (2). Gelatin deeps were inoculated to detect production of gelatinase (2). Starch Agar plate were inoculated to detect amylase (2). Ocular reticle used to determine bacteria size (2). Motility deeps were inoculated to detect motility on bacteria (2). Thioglycollate broth used to determine oxygen requirements (2). Carbohydrate fermentation
The purpose of this study is to identify an unknown bacterium from a mixed culture, by conducting different biochemical tests. Bacteria are an integral part of our ecosystem. They can be found anywhere and identifying them becomes crucial to understanding their characteristics and their effects on other living things, especially humans. Biochemical testing helps us identify the microorganism present with great accuracy. The tests used in this experiment are rudimentary but are fundamental starting points for tests used in medical labs and helps students attain a better understanding of how tests are conducted in a real lab setting. The first step in this process is to use gram-staining technique to narrow down the unknown bacteria into one of the two big domains; gram-negative and gram-positive. Once the gram type is identified, biochemical tests are conducted to narrow down the specific bacterial species. These biochemical tests are process of elimination that relies on the bacteria’s ability to breakdown certain kinds of food sources, their respiratory abilities and other biochemical conditions found in nature.
the replicate shows the same trend as the first experiment. I used a measuring cylinder and a beaker to measure out the amounts of water; however these did not seem to affect the quality of my results. To increase the accuracy of my results I could have perhaps used a burette. Even though I did the best I could to keep the experiment accurate, I did. some places there were mistakes that unintentionally occurred.
The procedure of the lab on day one was to get a ring stand and clamp, then put the substance in the test tube. Then put the test tube in the clamp and then get a Bunsen burner. After that put the Bunsen burner underneath the test tube to heat it. The procedure of the lab for day two was almost exactly the same, except the substances that were used were different. The
mutans was problematic due to its difference with Bergey’s Manual result for the catalase test. However, after comparing it with a peers results, it seems very possible that the strain we are working with varies from the strain used in Bergey’s. Bacteria possess the ability to develop varying phenotypes within the same species due to frequent mutation and horizontal gene transfer. Therefore, it is possible that the results obtained in our lab may vary from those provided in Bergey’s Manual. Arriving to the conclusion that the Gram negative bacteria was Klebsiella pneumoniae was much more direct. Using Bergey’s Flowchart for identification, the bacteria shared the test results and had a similar shape and
The one advantage that was apparent is that staphylococci did not develop very strong resistance inspite of introducing it several times in culture media with vancomycin
Life History and Characteristics: Staphylococcus aureus is a gram positive bacterium that is usually found in the nasal passages and on the skin of 15 to 40% of healthy humans, but can also survive in a wide variety of locations in the body. This bacterium is spread from person to person or to fomite by direct contact. Colonies of S. aureus appear in pairs, chains, or clusters. S. aureus is not an organism that is contained to one region of the world and is a universal health concern, specifically in the food handling industries.
Coli. Each culture was grown in an M9 medium. One culture utilized glucose as a carbon source, while the other utilized succinate as a carbon source. Two other treatments of E. Coli were also tested, one without succinate and one without glucose. These two treatments were added as a baseline to compare how much succinate and how much glucose actually helped the E. coli grow. The two treatments were covered with parafilm and for the purposes of this experiment, will be called blanks. These cultures remained within their assigned group all day to measure the growth of E. Coli. The following process was repeated by all groups throughout the day. A cuvette was labeled with the sample that was being tested. The writing was at the top of the cuvette to prevent light from being disturbed and affecting results. 3 mL of the tested sample were placed in a flask using a sterilized 1 mL pipet. The spectrophotometer was then rezeroed with the corresponding blank inside. This was so that only growth would be measured. After recording measurements the flasks were returned to the incubator and the pipets were disposed of in a red biohazard bag. The contents of the cuvette were poured into 50% bleach to kill any E. coli. The cuvette was rinsed with distilled water. This process was repeated every 30 minutes over the course of eight and a half hours. Measurements at 12:00, 12:30, and 15:30 were missed due
Staphylococcus aureus, aka, Golden Staph because of its colour on the laboratory plate. It is a bacteria that is normally harmless to the skin, can sometimes cause minor infections and boils etc. This bacteria is slowly becoming more resistant to the most powerful antibiotics. 20 – 40% of all Golden Staph are resistant to the antibiotic. Only 5% of those bacteria can be treated with vancomycin which is the last line of defence and isn’t looking too good anymore. Golden Staph is a type of superbug. Superbugs are strains of bacteria that are resistant to overused antibiotics as they have mutated after being in contact with antibiotics. Therefore the antibiotics can't kill the superbug anymore. Around half antibiotic intake is unnecessary in Australia.
stains on sputum’s and body fluids, and have completed a few AFB cultures. Apart from
There is also the potential of human error within this experiment for example finding the meniscus is important to get an accurate amount using the graduated pipettes and burettes. There is a possibility that at one point in the experiment a chemical was measured inaccurately affecting the results. To resolve this, the experiment should have been repeated three times.