Wait a second!
More handpicked essays just for you.
More handpicked essays just for you.
E.coli growth in nutrient broth
Don’t take our word for it - see why 10 million students trust us with their essay needs.
Recommended: E.coli growth in nutrient broth
Lab Exercise 6: The Ubiquity of Bacteria
Purpose: The purpose of Lab Exercise 6: The Ubiquity of Bacteria is to introduce to the microbiology student, the proper techniques for acquiring bacteria cultures from natural sources and appreciate that bacteria are found everywhere.
Equipment/Tools: 1-test tube of nutrient broth, 1-sterile swab, 1-petri dish with nutrient agar, 1-petri dish with sheep’s blood, 1-incubator, 1-sharpie pen and a cough.
Observations/Results:
One test tube incubated for 120 hours at 98.6 degrees Fahrenheit containing the cultural (macroscopic) characteristics for bacterial cultures grown in nutrient broth revealed moderate growth accompanied by pungent odor, an opaque color, a flocculent surface and a turbid subsurface.
…show more content…
The petri dish was inoculated with a cough and placed in an incubator for 120 hours at 98.6 degrees Fahrenheit. The results from petri dish two revealed minimal growth of bacterial spores. This exercise revealed the desired results.
Answer the following Questions:
1. Why is the level of contamination measured as number of colonies rather than size of colonies?
The number of colonies is related to the amount of bacteria in the original sample, while the size of the colonies is not. Therefore, a single bacterium is invisible to the human eye. However, over time each bacterium will grow and divide, and after 1 or 2 days, colonies will form on the petri dishes. Thus, the number of colonies will tell you the number of bacteria in your original sample, while the size of the colonies should coincide with the amount of time that the plates were left in the incubator.
2. Compare the ribosomes of bacteria (prokaryotic) to the ribosomes eukaryotic microorganisms?
Both prokaryotic and eukaryotic cells have many ribosomes, but the ribosomes found in eukaryotic cells are larger and more sophisticated than those of the prokaryotic
I identified the genus and species of an unknown bacterial culture, #16, and I applied the following knowledge of morphologic, cultural and metabolic characteristics of the unknown microorganism according to the laboratory manual as well as my class notes and power point print outs. I was given an incubated agar slant labeled #16 and a rack of different tests to either examine or perform myself; the tests are as follows: Gram Stain; Nutrient Gelatin Test; Carbohydrate Fermentation; Dextrose, Lactose and Sucrose; IMVIC tests; Citrate, Indole, Mythel-Red and Vogues Proskauer test; as well as a Urease and TSI Test. Materials and Methods/Results Upon receiving the Microorganism (M.O.) #16, I prepared a slide by cleaning and drying it. Then, using a bottle of water I placed a sterile drop of water on the slide and used an inoculating loop, flame sterilized, I took a small sample of the unknown growth in my agar slant and smeared it onto the slide in a dime sized circle and then heat fixed it for ten minutes.
The first day an unknown sample was assigned to each group of students. The first test applied was a gram stain to test for gram positive or gram-negative bacteria. The morphology of the two types of bacteria was viewed under the microscope and recorded. Then the sample was put on agar plates using the quadrant streak method for isolation. There were three agar plates; one was incubated at room temperature, the second at 30 degrees Celsius, and the third at 37 degrees Celsius. By placing each plate at a different temperature optimal growth temperature can be predicted for both species of bacteria.
In this lab project, the microbiology students were given 2 unknown bacteria in a mixed broth each broth being numbered. The goal of this project is to determine the species of bacteria in the broth. They had to separate and isolate the bacteria from the mixed broth and ran numerous tests to identify the unknown bacteria. The significance of identifying an unknown bacteria is in a clinical setting. Determining the exact bacteria in order to prescribe the right treatment for the patient. This project is significant for a microbiology students because it gives necessary skills to them for future careers relating to clinical and research work.
The purpose of this study is to identify an unknown bacterium from a mixed culture, by conducting different biochemical tests. Bacteria are an integral part of our ecosystem. They can be found anywhere and identifying them becomes crucial to understanding their characteristics and their effects on other living things, especially humans. Biochemical testing helps us identify the microorganism present with great accuracy. The tests used in this experiment are rudimentary but are fundamental starting points for tests used in medical labs and helps students attain a better understanding of how tests are conducted in a real lab setting. The first step in this process is to use gram-staining technique to narrow down the unknown bacteria into one of the two big domains; gram-negative and gram-positive. Once the gram type is identified, biochemical tests are conducted to narrow down the specific bacterial species. These biochemical tests are process of elimination that relies on the bacteria’s ability to breakdown certain kinds of food sources, their respiratory abilities and other biochemical conditions found in nature.
After the end of the experiment the unknown 10 sample was Staphylococcus epidermidis. Came to this conclusion by first beginning with a Gram Stain test. By doing this test it would be easier to determine which route to take on the man made flow chart. Gram positive and gram negative bacteria have a set of different tests to help determine the unknown bacterium. Based on the different tests that were conducted in lab during the semester it was determined that the blood agar, MSA, and catalase test are used for gram positive bacteria while Macconkey, EMB, TSI, and citrate tests are used for gram negative bacteria. The results of the gram stain test were cocci and purple. This indicated that the unknown bacteria were gram positive. The gram stain test eliminated Escherichia coli, Klebsiella pneumonia, Salmonella enterica, and Yersinia enterocolitica as choices because these bacteria are gram negative. Next a Blood Agar plate was used because in order to do a MSA or a Catalase test there needs to be a colony of the bacteria. The result of the Blood Agar plate was nonhemolytic. This indicated that there was no lysis of red blood cells. By looking at the plate there was no change in the medium. Next an MSA test was done and the results showed that there was growth but no color change. This illustrates that the unkown bacteria could tolerate high salt concentration but not ferment mannitol. The MSA plate eliminated Streptococcus pneumonia and Streptococcus pyogenes as choices since the bacteria can’t grow in high salt concentration. Staphylococcus aureus could be eliminated because not only did the unknown bacteria grow but also it didn’t change color to yellow. Lastly a Catalase test was done by taking a colony from the Blood Agar plate...
The purpose of this laboratory is to learn about cultural, morphological, and biochemical characteristics that are used in identifying bacterial isolates. Besides identifying the unknown culture, students also gain an understanding of the process of identification and the techniques and theory behind the process. Experiments such as gram stain, negative stain, endospore and other important tests in identifying unknown bacteria are performed. Various chemical tests were done and the results were carefully determined to identify the unknown bacteria. First session of lab started of by the selection of an unknown bacterium then inoculations of 2 tryptic soy gar (TSA) slants, 1 nutrient broth (TSB), 1 nutrient gelatin deep, 1 motility
Phenotypic methods of classifying microorganisms describe the diversity of bacterial species by naming and grouping organisms based on similarities. The differences between Bacteria, Archaea and Eukaryotes are basic. Bacteria can function and reproduce as single cells but often combine into multicellular colonies. Bacteria are also surrounded by a cell wall. Archaea differ from bacteria in their genetics and biochemistry. Their cell membranes are made with different material than bacteria. Just like bacteria, archaea are also single cell and are surrounded by a cell wall. Eukaryotes, unlike bacteria and archaea, contain a nucleus. And like bacteria and archaea, eukaryotes have a cell wall. The Gram stain is a system used to characterize bacteria based on the structural characteristics of their cell walls. A Gram-positive cell will stain purple if cell walls are thick and a Gram-negative cell wall appears pink. Most bacteria can be classified as belonging to one of four groups (Gram-positive cocci, Gram-positive bacilli, Gram-negative cocci, and Gram-negative bacilli) (Phenotypic analysis. (n.d.).
The purpose of this project was to identify unknown bacteria species from a mixed culture. The two unknown species were initially plated onto Tryptic Soy Agar (TSA), Eosin Methylene Blue (EMB), Mannitol Salt Agar (MSA), and blood agar plates to distinguish between the two different bacteria using colony size, color, shape, and growth characteristics. By identifying and inoculating the differing types of colonies, the two unknown bacteria were purified and able to be tested
Inconsistencies in this lab could have caused variations in data collecting. Collecting data from one petri dish was challenging because something could have been different on other petri dishes if this experiment was tested on several petri dishes. This could have been different because the other petri dishes could have had more micro-organisms in Section 2 instead of Section 1, or no bacteria could have grown at all in every section of the petri dish.- Second, nothing grew in section B even though there were no disinfectants in that section. The reason why the bacteria and mold might have grown in sections 1, 2, and 3 was because in the process of making the experiment, the coffee filter papers were touched with glove free hands and were not clean. If this lab was run again, some changes would be to wear rubber gloves, do not pour the hand sanitizers on the coffee filter paper but just pour one pump straight into the petri dish, have more than one petri dish to collect data off of, and check when the last time someone cleaned the door knob
Another difference between the two cells is that, in prokaryotic cells there is cytoplasmic movement; however there is no cytoplasmic movement in eukaryotic cells.
Talaro , K., & Chess, B. (2012). Foundations in microbiology. (8th ed., pp. 563-564). New York, NY:
2. The specific microorganism should be isolated from the diseased animal and grown in pure culture on artificial laboratory media.
Leboffe, M. J., & Pierce, B. E. (2010). Microbiology: Laboratory Theory and Application, Third Edition 3rd Edition (3rd Ed.). Morton Publishing
In this method, living spores which are resistant to whichever sterilizing agent is being tested are prepared in either a self contained system, such as dry sp...
The abnormal presence of bacterial growth can be inspected under a microscope. If the organism inspected is not the bacteria used in the experiment, it means that the growth of the bacterial culture investigated is absent. By using this method, contamination by foreign substances in the surrounding air can be ruled out and the results would be more accurate.