Preparing Benzoic Acid from Benzylalcohol
Planning (a)
Problem
The aim of this experiment is to synthesize benzioc acid, with the
highest possible yield, by oxidizing benzylalcohol.
Hypothesis
We expect the percentage yield to be about 50% due to several
processes such as cooling and filtering.
Possible Variables
- Time
- Temperature (of water)
- Filter
Planning (b)
Apparatus/ Materials
- Round bottomed flask under reflux
- benzylalcohol
- HCl
- Na2O4
- Büchner funnel
- beakers
- sodium carbonate
Procedure
The benzioc acid is synthesized by heating benzylalcohol in a round
bottomed flask under reflux. In addition to that, we use Na2O4 as a
oxidizing agent. After that, we use HCl to precipitate it. After the
some time, we filter it through a Büchner funnel before it is
recrystallized and filtered again. The mass was recorded as it was
dry.
By adding sodium carbonate, we will now test whether what obtained is
benzoic acid or not, because one can observe bobbles if it is an acid.
After that we burn it to test if it is aromatic. Soot would be
possible to obtain if it was to be aromatic.
Data Collection
Mass of benzylalcohol
3.991 grams
Mass of flask (before adding benzoic acid)
95.47 grams
Mass of flask (after adding benzoic acid)
96.68 grams
After the addition of sodium carbonate
Bubbles were obtained
After burning it
Soot was obtained
Data Processing
Mass of benzoic acid
96.68 – 95.47 = 1.21 grams
We assume that the reaction goes to completion which would mean that
one mole of benzylalcohol should give one mole of benzoic acid.
Hence, the theoretical yield is 100% by amount of mol.
Molar mass
Benzylalcohol
108 g/mol
Benzoic acid
122 g/mol
Initial amount of benzylalcohol: [IMAGE]
Then the reaction tube was capped but not tightly. The tube then was placed in a sand bath reflux to heat it until a brown color was formed. Then the tube was taken out of the sand bath and allowed to cool to room temperature. Then the tube was shaken until a formation of a white solid at the bottom of the tube. After formation of the white solid, diphenyl ether (2 mL) was added to the solution and heated until the white solid was completely dissolved in the solution. After heating, the tube was cooled to room temperature. Then toluene (2 mL) was added to the solution. The tube was then placed in an ice bath. Then the solution was filtered via vacuum filtration, and there was a formation of a white solid. Then the product was dried and weighed. The Final product was hexaphenylbenzene (0.094 g, 0.176 mmol,
The purpose of the Unknown White Compound Lab was to identify the unknown compound by performing several experiments. Conducting a solubility test, flame test, pH paper test, ion test, pH probe test, conductivity probe test, and synthesizing the compound will accurately identified the unknown compound. In order to narrow down the possible compounds, the solubility test was used to determine that the compound was soluble in water. Next, the flame test was used to compare the unknown compound to other known compounds such as potassium chloride, sodium chloride, and calcium carbonate. The flame test concluded that the cation in the unknown compound was potassium. Following, pH paper was used to determine the compound to be neutral and slightly
The theoretical yield of the m-nitrobenzoate was de-termined to be 4.59 grams. The actual amount of crude product was determined to be 3.11 grams. The percent yield of the crude product was determined to be 67.75 %. The actual amount of pure product formed was found to be 4.38 grams. The percent yield of the pure product was determined to be 95.42%. Regarding the thin layer chromatography, the line from the solvent front was 8 centimeters.
During our investigation we first decided how much sodium bicarbonate we would be using. We decided on 11 grams which was about half of the crucible. We then used the bunsen burner to heat up the sodium bicarbonate. We heated the sodium bicarbonate expecting there to would be a chemical reaction and the atoms would be rearranged during thermal decomposition. We heated the sodium
The primary goal of this laboratory project was to identify an unknown compound and determine its chemical and physical properties. First the appearance, odor, solubility, and conductivity of the compound were observed and measured so that they could be compared to those of known compounds. Then the cation present in the compound was identified using the flame test. The identity of the anion present in the compound was deduced through a series of chemical tests (Cooper, 2009).
The purpose of conducting experiment was to determine the identity of white compound. Based on the 5 gram of unknown white compound several experiment conducted including solubility test, pH test, flame test, and ion test. Several materials including chemicals used throughout experiment and will be described through paragraphs.
Benzyl bromide, an unknown nucleophile and sodium hydroxide was synthesized to form a benzyl ether product. This product was purified and analyzed to find the unknown in the compound. A condenser and heat reflux was used to prevent reagents from escaping. Then the solid product was vacuum filtered.
Hydrochloric acid is the clear colourless solutions of hydrogen chloride (HCl) in water, hydrochloric acid is also a highly corrosive substance and a strong mineral acid meaning they are formed from inorganic compounds, hydrochloric acid is a monoprotic acid meaning that it can only ionize one H+ ion. As a result hydrochloric acid can be used in a wide range of industrial practices such as removing rust from steel, ore processing, the production of corn syrup and making of PVC plastics. Hydrochloric acid is made using a very straight forward method which involves dissolving hydrogen chloride (HCl) in water, releasing the H+ cation and Cl- anion. In this aqueous form the H+ ion joins water to form a hydronium ion (H3O+)
When benzoic acid paired with 1.0 M NaOH, it was observed that both compounds were soluble. Upon the addition of 6.0 M HCl into this solution, benzoic acid became insoluble. Benzoic acid was also insoluble in 1.0 M HCl. Ethyl 4-aminobenzoate was found to be insoluble in 1.0 M NaOH and soluble in 1.0 M HCl. But then, after adding 6.0 M NaOH into the test tube C (mixture of ethyl 4-aminobenzoate and 1.0 M HCl), a white powdery solid (undissolved compound) was formed. These demonstrate that both the acid and base became more soluble when they were ionized and less soluble when they were
Overall this experiment was a success yielding 98.8% of the initial 1.34g of known compounds. Looking at Table 1 the problem of separation quickly becomes apparent, both M-Toluic Acid and Acetanilide are insoluble in water. This left two non-salts in one mixture, and what solvent to use to separate these two was the most important question as their respective melting points are also very similar. After looking at both compounds and noticing the M-Toluic Acid (Image 2) had an OH group hanging off of it next to a double bond, the H ion on the end would be susceptible to a base. But further investigation showed the large number of hydrogen atoms hanging off the Acetanilide (Image 3) and it was thought that the NaHCO3 would be strong enough to rip the Acetanilide apart.
Ninhydrin test is performed to detect the presence of free α-amino group (-NH2) which presents in all amino acids, proteins or peptides. It is an endothermic process involving redox reaction. Ninhydrin is a powerful oxidizing agent which also known as triketohydrindene hydrate. First, an oxidative deamination reaction occurs as the α-amino acid reacts with ninhydrin. Two hydrogens from the α-amino acid are elicited to produce an alpha-imino acid. On the same time, the ninhydrin itself undergoes reduction by losing an oxygen atom to form reduced ninhydrin, hydrindantin. Next, hydrolysis reaction happens. The amine group in the alpha-imino acid reacts with the water molecule to form an alpha-keto acid with an ammonia molecule. The alpha-keto acid then undergoes decarboxylation to form an aldehyde with a carboxyl group (CO2). The net result includes hydrindantin, aldehyde, ammonia, and CO2. The hydrindantin and ammonia produced are responsible for the colour formation. The process is continuing as ninhydrin condenses with ammonia and hydrindantin to produce an intensely blue or purple pigment, Ruhemann's purple. This reaction provides an extremely sensitive test for amino acids. Ninhydrin which is originally yellow reacts with amino acid and turns deep purple. The colour intensity produced is directly proportional to the amino acid
Ensure gloves are worn at all times when handling strong acids and bases within the experiment of the preparation of benzocaine. 4-aminobenzoic acid (3.0g, 0.022 moles) was suspended into a dry round-bottomed flask (100cm3) followed by methylated sprits (20 cm3). Taking extra care the concentrated sulphuric acid of (3.0 cm3, 0.031 moles) was added. Immediately after the condenser was fitted on, and the components in the flask were swirled gently to mix components. It should be ensured that the reactants of the concentrated sulphuric acid and the 4-aminobenzoic acid were not clustered in the ground glass joint between the condenser itself and the flask. In order to heat the mixture to a boiling point, a heating mantle was used and then further left for gently refluxing for a constituent time of forty minutes. After the duration of the consistent forty minutes the rou...
To start this study, nine labeled test tubes were setup with precise amounts of 2mL of deionized water, and 1ml of 50-50 corn syrup to water mixture. The addition of 1mL of yeast would also be added, but this will not be added until the fermentation apparatus is assembled in the water bath and ready to begin the reaction. The assemble of our apparatus included submerging and combining of the test tube and tubing with a stopper to ensure no air is in the apparatus. Then the assemble would be put this apparatus with water inside a Styrofoam cup, to ensure temperature is conserved best, and prepare to add the test tube with controlled substance to the test tube and stopper. The water baths at different temperatures are the only variables changed. One water bath was set up as the control group at room temperature, 28°C. The second water bath was setup to 0.4°C by use of ice water, and third bath used hot water at 49°C. Right before adding the test tube with control substance, the yeast would be added to create the reaction that produced the gas. To ensure best accuracy of fermentation, an initial test tube with all substances but yeast was performed to obtain an initial equilibrium time. Measuring of this time occurs till no more air is bubbling out of tube. This time is where we would mark are initial measuring line for each of the following reactions. As the gas pushes the water out of the test tube
Organic compounds are commonly found every day in every part of life. Propionaldehyde is a common organic compound also known as propanal, propaldehyde, and methylacetaldehyde with propanal being the most common alternate name. It is a clear colorless liquid at room temperature. Coming from the functional group of aldehyde, propionaldehyde has a C=O bond in replace with two hydrogen atoms, which would be the base propane molecule. The molecular formula is C3H6O, the structural formula CH3CH2CHO, the structure is found in figure 1 (end). Propionaldehyde can only be produced in few ways by a few companies and is used in many various products. There are many few specifically know health effects of propionaldehyde, but it is a very dangerous compound due to its chemical properties.
The objectives of Lab 6 is to produce biodiesel from vegetable oil and determine the yields for this process. The materials of this lab are a 15 mL capped centrifuge tube, a balance scale, a disposable glass pipette, methanol, and KOH.