Experimental section Synthesis of dimethyl tetraphenyl phthalate In a small reaction tube, the tetraphenylcyclopentadienone (0.110 g, 0.28 mmol) was added into the dimethyl acetylene dicarboxylate (0.1 mL) and nitrobenzene (1 mL) along with a boiling stick. The color of the mixed solution was purple. The solution was then heated to reflux until it turned into a tan color. After the color change has occurred, ethanol (3 mL) was stirred into the small reaction tube. After that, the small reaction tube was placed in an ice bath until the solid was formed at the bottom of the tube. Then, the solution with the precipitate was filtered through vacuum filtration and washed with ethanol. The precipitate then was dried and weighed. The final product was dimethyl tertraphenylpthalate (0.086 g, 0.172mmol, 61.42%). Synthesis of hexaphenylbenzene …show more content…
Then the reaction tube was capped but not tightly. The tube then was placed in a sand bath reflux to heat it until a brown color was formed. Then the tube was taken out of the sand bath and allowed to cool to room temperature. Then the tube was shaken until a formation of a white solid at the bottom of the tube. After formation of the white solid, diphenyl ether (2 mL) was added to the solution and heated until the white solid was completely dissolved in the solution. After heating, the tube was cooled to room temperature. Then toluene (2 mL) was added to the solution. The tube was then placed in an ice bath. Then the solution was filtered via vacuum filtration, and there was a formation of a white solid. Then the product was dried and weighed. The Final product was hexaphenylbenzene (0.094 g, 0.176 mmol,
The sole purpose of performing the lab was to utilize aldol condensation reactions to synthesize a cyclopenta-dienone, while using UV spectrophotometry and computer visualization to further understand the dienone. In the beginning of the lab, the tetraphenylcyclopentadienone (TPCP) was synthesized using dibenzyl ketone and benzyl under extremely basic conditions. The synthesis process could be further understood by observing the mechanism portrayed in Figure 1. According to the figure, the dibenzyl ketone will first loose an alpha hydrogen to form the enolate intermediate.
The purpose of the Unknown White Compound Lab was to identify the unknown compound by performing several experiments. Conducting a solubility test, flame test, pH paper test, ion test, pH probe test, conductivity probe test, and synthesizing the compound will accurately identified the unknown compound. In order to narrow down the possible compounds, the solubility test was used to determine that the compound was soluble in water. Next, the flame test was used to compare the unknown compound to other known compounds such as potassium chloride, sodium chloride, and calcium carbonate. The flame test concluded that the cation in the unknown compound was potassium. Following, pH paper was used to determine the compound to be neutral and slightly
The theoretical yield of the m-nitrobenzoate was de-termined to be 4.59 grams. The actual amount of crude product was determined to be 3.11 grams. The percent yield of the crude product was determined to be 67.75 %. The actual amount of pure product formed was found to be 4.38 grams. The percent yield of the pure product was determined to be 95.42%. Regarding the thin layer chromatography, the line from the solvent front was 8 centimeters.
This experiment was conduct to investigate the fluorescent behaviour of Leucophor PAF and to investigate the quenching of QBS with NaCl. It was found that the Leucophor PAF indeed satisfied the characteristic to act as whitening agent. It was also found that the quenching of QBS with NaCl was a diffusion-controlled collision process.
The goal of this two week lab was to examine the stereochemistry of the oxidation-reduction interconversion of 4-tert-butylcyclohexanol and 4-tert-butylcyclohexanone. The purpose of first week was to explore the oxidation of an alcohol to a ketone and see how the reduction of the ketone will affect the stereoselectivity. The purpose of first week is to oxidize the alcohol, 4-tert-butylcyclohexanol, to ketone just so that it can be reduced back into the alcohol to see how OH will react. The purpose of second week was to reduce 4-tert-butylcyclohexanol from first week and determine the effect of the product's diastereoselectivity by performing reduction procedures using sodium borohydride The chemicals for this lab are sodium hypochlorite, 4-tert-butylcyclohexanone
At this point the identity of the unknown compound was hypothesized to be calcium nitrate. In order to test this hypothesis, both the unknown compound and known compound were reacted with five different compounds and the results of those reactions were compared. It was important to compare the known and unknown compounds quantitatively as well to ensure that they were indeed the same compound. This was accomplished by reacting them both with a third compound which would produce an insoluble salt that could be filte...
For this experiment we have to use physical methods to separate the reaction mixture from the liquid. The physical methods that were used are filtration and evaporation. Filtration is the separation of a solid from a liquid by passing the liquid through a porous material, such as filter paper. Evaporation is when you place the residue and the damp filter paper into a drying oven to draw moisture from it by heating it and leaving only the dry solid portion behind (Lab Guide pg. 33.).
The purpose of conducting experiment was to determine the identity of white compound. Based on the 5 gram of unknown white compound several experiment conducted including solubility test, pH test, flame test, and ion test. Several materials including chemicals used throughout experiment and will be described through paragraphs.
The reaction of (-)-α-phellandrene, 1, and maleic anhydride, 2, gave a Diels-Alder adduct, 4,7-ethanoisobenzofuran-1,3-dione, 3a,4,7,7a-tetrahydro-5-methyl-8-(1-methylethyl), 3, this reaction gave white crystals in a yield of 2.64 g (37.56%). Both hydrogen and carbon NMR as well as NOESY, COSY and HSQC spectrum were used to prove that 3 had formed. These spectroscopic techniques also aided in the identification of whether the process was attack via the top of bottom face, as well as if this reaction was via the endo or exo process. These possible attacks give rise to four possible products, however, in reality due to steric interactions and electronics only one product is formed.
The goal of this lab is to exemplify a standard method for making alkyne groups in two main steps: adding bromine to alkene groups, and followed by heating the product with a strong base to eliminate H and Br from C. Then, in order to purify the product obtained, recrystallization method is used with ethanol and water. Lastly, the melting point and IR spectrum are used to determine the purity of diphenylacetylene.
Benzyl bromide, an unknown nucleophile and sodium hydroxide was synthesized to form a benzyl ether product. This product was purified and analyzed to find the unknown in the compound. A condenser and heat reflux was used to prevent reagents from escaping. Then the solid product was vacuum filtered.
Ensure gloves are worn at all times when handling strong acids and bases within the experiment of the preparation of benzocaine. 4-aminobenzoic acid (3.0g, 0.022 moles) was suspended into a dry round-bottomed flask (100cm3) followed by methylated sprits (20 cm3). Taking extra care the concentrated sulphuric acid of (3.0 cm3, 0.031 moles) was added. Immediately after the condenser was fitted on, and the components in the flask were swirled gently to mix components. It should be ensured that the reactants of the concentrated sulphuric acid and the 4-aminobenzoic acid were not clustered in the ground glass joint between the condenser itself and the flask. In order to heat the mixture to a boiling point, a heating mantle was used and then further left for gently refluxing for a constituent time of forty minutes. After the duration of the consistent forty minutes the rou...
The blue bottle experiment is a chemical reaction in which a bottle with a water solution containing glucose, NaOH, methylene blue and air turns from a colorless substance to a dark blue substance after shaking. In this reaction, glucose is oxidized by dioxygen and forms C6H12O7 (gluconic acid):CH2OH–CHOH–CHOH–CHOH–CHOH–CHO + 1/2 O2 --> CH2OH–CHOH–CHOH–CHOH–CHOH–COOH. The solution loses color again after a short period of time. This color change can be repeated as many times as the bottle is shaken. First step is when the alkenols of glucose is formed. During the second step the redox reaction o...
The process need toluene and hydrogen as a main reactor. Then, toluene and hydrogen are converted in a reactor packed with catalyst to produce benzene and methane. This reaction is exothermic and the operating conditions are 500 0C to 660 0C, and 20 to 60 bar of pressure. This process begins with mixing fresh toluene with a stream of recycle unreacted toluene, and the mixing is achieved in a storage tank. Then, the toluene is pumped to combine it with a stream of mixed hydrogen and fresh hydrogen gas. The mixture of toluene and hydrogen is preheated before it is introduce to the heater or furnace. In the furnace, the stream is heated to 600 0C, then introduced into the reactor. Basically, the main reactions occurs in the reactor.
Firstly, an amount of 40.90 g of NaCl was weighed using electronic balance (Adventurer™, Ohaus) and later was placed in a 500 ml beaker. Then, 6.05 g of Tris base, followed by 10.00 g of CTAB and 3.70 g of EDTA were added into the beaker. After that, 400 ml of sterilized distilled water, sdH2O was poured into the beaker to dissolve the substances. Then, the solution was stirred using the magnetic stirrer until the solution become crystal clear for about 3 hours on a hotplate stirrer (Lab Tech® LMS-1003). After the solution become clear, it was cool down to room temperature. Later, the solution was poured into 500 ml sterilized bottle. The bottle then was fully wrapped with aluminium foil to avoid from light. Next, 1 mL of 2-mercaptoethanol-β-mercapto was added into fully covered bottle. Lastly, the volume of the solution in the bottle was added with sdH2O until it reaches 500 ml. The bottle was labelled accordingly and was stored on chemical working bench.