Polymerization Time: Polymerization Time

758 Words2 Pages

Polymerization Time
Figures 3a-d show the effect of polymerization time on %GY (Fig. 3a) ; %GE (Fig. 3b); %TC (Fig. 3c) and %HP (Fig. 3d) at four different temperatures ( 50 0 ; 60 0 ; 70 0 and to 80 0C ). It is evident that , as the reaction time became longer , all polymer yield , except %GE , increased. The polymerization time corresponds to 180 min. brought about the maximum percentages for the positively dependence of polymer criteria. Enhancing effect of prolonging the duration of polymerization on grafting (%GY) and homopolymer (%HP) is reflected on the extent of total conversion (%TC) (Fig. 3). The latter increased as the time of polymerization increased particularly during the initial stages of the polymerization reaction. …show more content…

The latter embraced the salts of ferrous ammonium sulphate , manganous sulphate ans cobaltous sulphate. This pre-treatment process was carried out by impregnating the cellulose thiocarbonate fabric in a single metal salt solution at 30 0C for 30 min. , as described in the metathesis procedure. The pre-metallized cellulose thiocarbonate fabric was then grafted using moderate conditions included 4% MAA , 30 mmolL SPB , at 60 0C for 60 min. The results obtained are illustrated in Figure 5a-d. The data of this figure disclose (i) that the percentages graft yield (Fig. 5a) , grafting efficiency (Fig. 5b), and total conversion (Fig. 5c) enlarge by increasing the Fe2+ salt solution concentration and attain maximal at the FAS concentration corresponds to 0.2 mmol/L ; thereafter they decrease. The homopolymer (Fig. 5d) has an adverse deportment , (ii) that all polymer criteria slightly augment by heightening the Mn2+ salt solution concentration up to 0.02 mmolL ,then fall , (iii) that the Co2+ reductant ion fails to further improve the MAA grafting efficiency and graft yield. The %TC decreases by increasing the Co2+ salt solution concentration up to 0.06 mmolL , then increases. The lone prosperity of the Co2+ ion is the enhancement of MAA homopolymer

Open Document