Wait a second!
More handpicked essays just for you.
More handpicked essays just for you.
Thermochemistry and questions
Don’t take our word for it - see why 10 million students trust us with their essay needs.
Recommended: Thermochemistry and questions
Instructional Purpose - “I Wonder…” Statements - Guided Reading
Instructional Purpose:
Students need to understand the importance of thermochemistry. Thermochemistry revolves around the energy (heat) associated with reactions and other materials. This field of chemistry has a variety of terms and applications that need to be understood before heading into college level chemistry courses. Terms such as temperature, specific heat, calorimeter, and enthalpy are commonly used within lab experiments. These terms also link to common items the students may see daily. Hot hands and the number of calories in food items are linked to thermochemistry.
What two places may cause students difficulty during reading?
The introduction of the term specific
Have any of you wondered about the magic that occurs within a hot hand? The hot hand is a small pouch that contains mysterious elements that combines to start a reaction that produces heat. There is a specific field of chemistry that studies the heat associated with reactions, and today we begin our journey learning about this form of chemistry called thermochemistry! Thermochemistry is a fascinating field of chemistry that contains new terms and ideas that need to be understood in order to proceed into the mathematical applications of thermochemistry. We are going to create “I wonder…” statements to help with learning about these new terms while we read the
So let’s say I read the section about heat and temperature. I learned that heat and temperature are related, but they are different quantities. This idea of difference causes me to think about how the two terms are related but different, so I began to write a statement that embraces my curiousity of these terms that will hopefully be answer in the text or through a class discussion. I wonder… how heat and temperature are integrated within chemistry. Now I shall proceed and read the next section of the text to hopefully answer my statement. So as I was reading I came across the term “specific heat,” and the definition stated that specific heat is the amount of energy needed to raise the temperature of one gram of a substance by one degree celsius or one kelvin. I learned that the specific heat is a value that is required to raise one gram one degree higher in temperature! Since I found my answer in the text, I will write down this definition by my statement, so I can discuss it later in
Thermodynamics is essentially how heat energy transfers from one substance to another. In “Joe Science vs. the Water Heater,” the temperature of water in a water heater must be found without measuring the water directly from the water heater. This problem was translated to the lab by providing heated water, fish bowl thermometers, styrofoam cups, and all other instruments found in the lab. The thermometer only reaches 45 degrees celsius; therefore, thermodynamic equations need to be applied in order to find the original temperature of the hot water. We also had access to deionized water that was approximately room temperature.
The nano-thermal analysis method is capable of studying the specific regions of a sample irrespective of its composition. In a multi-component sample, the analysis methods make it possible for the researchers to distinguish between the different components and identify the different characteristics found in each of the sample (Craig, 2002). During the analysis of any sample, the nano-thermal method does not necessarily require the physical alteration of the sample. In its place, it is capable of analyzing any sample through surface studies.
Finding Out Which Fuel Releases the Most Energy Per Gram. Aim: To be able to Find out which fuel releases the most energy per gram. Scientific Theory: What is the Science of Heat is the transfer of energy between two objects due to a temperature. The sand is a sand.
Unit 7: Chemical Reactions: Students will understand the basic concepts of reactions, bonding, the “mole” and how this relates to the law of conversion of matter.
Although Black’s discovery of carbon dioxide was said to lay the foundation for modern chemistry, it wasn’t the only discovery he is credited for. He was the first to conclude that heat and temperature were two different things. Black used water as a universal substance to show that heat is energy, in which may be transported through moving and colliding molecules and the idea that temperature is the measurement of the average motion or kinetic energy of the molecules. He demonstrated this with a bucket of ice monitored by temperature constantly. The ice continually melted, but the temperature remained constant. Black is also well known for his discovery of latent heat, the heat required to convert a solid into a liquid or vapor, or a liquid into a vapor, without change of temperature. Latent heat was con be expressed in two ways: the heat can be absorbed if the change involves solid to liquid or liquid to gas or the heat can be released if the change involves gas to liquid or liquid to solid. Black took this idea and developed “specific heat”, in which is defined as the measured amount of heat required to raise the temperature of a substance by a specified number of degrees.
In this lab, I determined the amount of heat exchanged in four different chemical reactions only using two different compounds and water. The two compounds used were Magnesium Hydroxide and Citric Acid. Both compounds were in there solid states in powder form. Magnesium Hydroxide was mixed with water and the change in heat was measured using a thermometer. The next reaction combined citric acid and magnesium hydroxide in water. The change in heat was measured as well. For the third reaction citric acid was placed in water to measure the change in heat. In the last reaction, citric acid was combined with water. The heat exchanged was again measured. It is obvious we were studying the calorimetry of each reaction. We used a calorimeter
Thermodynamic equilibrium leads to the large-scale definition of temperature, as opposed to the small-scale definition related to the kinetic energy of the molecules. The first law of thermodynamics relates the various forms of kinetic and potential energy in a system to the work which a system can do and to the transfer of heat. This law is sometimes taken as a definition internal energy, and introduces an extra state variable, enthalpy. The first law of thermodynamics allows for many possible states of a system to exist. But experience indicates that only certain states occur. This leads to the second law of thermodynamics and contrast between another state variable called entropy. The second law stipulates that the total entropy of a system plus its environment can not decrease; it can remain constant for a reversible process but must always increase for an irreversible process. Thermal energy is the energy a substance or system has due to its temperature, i.e., the energy of moving or vibrating molecule. Thermodynamics involves measuring this energy, which can "exceedingly complicated," according to David McKee, a professor of physics at Missouri Southern State University. "The systems that we study in thermodynamics … consist of very large numbers of atoms or molecules interacting in complicated ways. But, if these systems meet the right criteria, which we call equilibrium, discovered with a very small number of measurements or
Quantum thermodynamic scientists are aiming to explore the behavior outside the lines of conventional thermodynamics. This exploration could be used for functional cases, which include “improving lab-based refrigeration techniques, creating batteries with enhanced capabilities and refining technology of quantum computing.” (Merali P.1). However, this field is still in an early state of exploration. Experiments, including the one that is being performed at Oxford University, are just beginning to test these predictions. “A flurry of attempts has been made to calculate how thermodynamics and the quantum theory might combine” (Merali P. 1). However, quantum physicist Peter Hänggi stated that “there is far too much theory and not enough experiment” (Merali P.1) in this field of study, which is why its credibility is undermined. Nevertheless, people are starting to put more effort into understanding quantum thermodynamics in order to make
Specific heat capacity of aqueous solution (taken as water = 4.18 J.g-1.K-1). T = Temperature change (oK). We can thus determine the enthalpy changes of reaction 1 and reaction 2 using the mean (14) of the data obtained. Reaction 1: H = 50 x 4.18 x -2.12.
The objective of this experiment was to identify a metal based on its specific heat using calorimetry. The unknown metals specific heat was measured in two different settings, room temperature water and cold water. Using two different temperatures of water would prove that the specific heat remained constant. The heated metal was placed into the two different water temperatures during two separate trials, and then the measurements were recorded. Through the measurements taken and plugged into the equation, two specific heats were found. Taking the two specific heats and averaging them, it was then that
Thermodynamics is the study of work, heat, and the energy of a system (NASA, 2010). To help explain in more detail the properties of thermodynamics are the laws of thermodynamics. The first law explains that a system’s internal energy can be increased by adding energy to the system or by doing work on the system (Serway & Vuille, 2012). An internal energy system is the sum of both its kinetic and potential energies. The first law more simply states that the change in internal energy of a system is caused by an exchange of energy across the system, typically in the form of heat, or by doing work on the system. This relationship can be represented by the equation:
Heat energy is transferred through three ways- conduction, convection and radiation. All three are able to transfer heat from one place to another based off of different principles however, are all three are connected by the physics of heat. Let’s start with heat- what exactly is heat? We can understand heat by knowing that “heat is a thermal energy that flows from the warmer areas to the cooler areas, and the thermal energy is the total of all kinetic energies within a given system.” (Soffar, 2015) Now, we can explore the means to which heat is transferred and how each of them occurs. Heat is transferred through conduction at the molecular level and in simple terms, the transfers occurs through physical contact. In conduction, “the substance
The first law of thermodynamics is that heat is work and work is heat. Energy can’t be created or destroyed but it can be converted from one form to another form. First law of thermodynamics would be eating food. Humans turn food into chemical energy and humans need that energy to keep functioning. The second law of thermodynamics is heat can only transfer to colder objects not hotter objects. An example would be ice melting in a cooler. The coldness from the ice doesn’t leave the cooler, instead the heat transfers into the cooler to melt the ice. The third law is that the work or energy put in is equal to the work out plus heat. Some heat energy will always be wasted, such as a computer giving off heat. Using the first law, when the energy is transferred from one form to another, there will always be wasted heat because of the second law. This is because the energy is converted from a useful form to a less useful form. The less useful form is heat.
Thermodynamics is the study that shows the relevance between the work and the heat. Thermodynamics has 2 laws. The first law declares that the heat and the work are mutually interchangeable. The second law states that a entropy of a secluded regulation can never decrease, because the secluded regulation always develops toward the equilibrium thermodynamic. These two laws attitudinize the process of a heat engine.The first law is the implementation of the preservation of energy to the regulation. The second law defines the potential eligibility of the machine and guidance of the energy flow.
Thermodynamics is the branch of science concerned with the nature of heat and its conversion to any form of energy. In thermodynamics, both the thermodynamic system and its environment are considered. A thermodynamic system, in general, is defined by its volume, pressure, temperature, and chemical make-up. In general, the environment will contain heat sources with unlimited heat capacity, allowing it to give and receive heat without changing its temperature. Whenever the conditions change, the thermodynamic system will respond by changing its state; the temperature, volume, pressure, or chemical make-up will adjust accordingly in order to reach its original state of equilibrium.