1.1 What is the microbiome
The human microbiome is the collective ensemble of a wide diversity and density of living micro organisms found both in and on the human body (i.e. the collective genome of the human microbiota). Its relevance has become so important as of late that is has taken its place at the top of 21st century scientific discoveries. (Ash 2014) It consists of mostly bacteria but also includes some archaea, fungi, viruses and protozoa. The main microbiome communities active in the body reside on and in deep layers of skin, the oral cavity,the nasal cavity, the urogenital tract and in the gastrointestinal tracts. (Blaser 2010)
The gut microbiome is harboured in the intestines and contains by far the largest, highest density and most diverse community of commensal bacteria in the human body. The resident microbes here outnumber host cells by at least 10 to 1(Azad et al. 2013) with the genome of these microbial populations estimated to have an even greater genetic potential than the human genome itself(Maccaferri et al. 2011a). Under normal physiological conditions, these microbes play a fundamental role in human health and well being. They mediate in the digestion of food and stimulate the development of the immune system by preventing
…show more content…
These techniques are not always reliable for various reasons. Not many bacteria are culturable under lab conditions(especially those found in the gut)(Eckburg et al. 2005) and even those types that can be cultured may not be the most important or the most dominant in a particular habitat. E.coli, for example is the most abundant organism readily cultured from the human gut but it isn’t actually abundant in the gut microbial communities. (Tannock 1999)Furthermore, it is near to impossible to distinguish different bacteria from one another on the basis of morphology as they come in a limited number of shapes .(Knight et al.
I identified the genus and species of an unknown bacterial culture, #16, and I applied the following knowledge of morphologic, cultural and metabolic characteristics of the unknown microorganism according to the laboratory manual as well as my class notes and power point print outs. I was given an incubated agar slant labeled #16 and a rack of different tests to either examine or perform myself; the tests are as follows: Gram Stain; Nutrient Gelatin Test; Carbohydrate Fermentation; Dextrose, Lactose and Sucrose; IMVIC tests; Citrate, Indole, Mythel-Red and Vogues Proskauer test; as well as a Urease and TSI Test.
The first day an unknown sample was assigned to each group of students. The first test applied was a gram stain to test for gram positive or gram-negative bacteria. The morphology of the two types of bacteria was viewed under the microscope and recorded. Then the sample was put on agar plates using the quadrant streak method for isolation. There were three agar plates; one was incubated at room temperature, the second at 30 degrees Celsius, and the third at 37 degrees Celsius. By placing each plate at a different temperature optimal growth temperature can be predicted for both species of bacteria.
In this lab project, the microbiology students were given 2 unknown bacteria in a mixed broth each broth being numbered. The goal of this project is to determine the species of bacteria in the broth. They had to separate and isolate the bacteria from the mixed broth and ran numerous tests to identify the unknown bacteria. The significance of identifying an unknown bacteria is in a clinical setting. Determining the exact bacteria in order to prescribe the right treatment for the patient. This project is significant for a microbiology students because it gives necessary skills to them for future careers relating to clinical and research work.
They can be found anywhere and identifying them becomes crucial to understanding their characteristics and their effects on other living things, especially humans. Biochemical testing helps us identify the microorganism present with great accuracy. The tests used in this experiment are rudimentary but are fundamental starting points for tests used in medical labs and helps students attain a better understanding of how tests are conducted in a real lab setting. The first step in this process is to use gram-staining technique to narrow down the unknown bacteria into one of the two big domains; gram-negative and gram-positive. Once the gram type is identified, biochemical tests are conducted to narrow down the specific bacterial species.
Jennifer Ackerman's main focus in her article The Ultimate Social Network, is that of the functions concerning bacteria within humans. Although scientists have had presumptions about humans being proficient in governing their body’s innermost structure, they soon come to recognize the sophistication of our inner space which holds an extensive plethora of bacteria and other microorganisms that lie within each and every one of us. Moreover, scientists' new and emerging view of how the human body operates, and the cause of increasing present-day diseases (i.e. obesity and different autoimmune disorders) are uncovered by analyzing effects of certain microbe species in our bodies. By italicizing on points such as the above, in conjunction with bacteria's genetic variations, and modern computing technology, the author proves that scientists are quickly progressing with the characterization the most prevalent species of microbes, which, in her opinion, is definitely paying off.
Phenotypic methods of classifying microorganisms describe the diversity of bacterial species by naming and grouping organisms based on similarities. The differences between Bacteria, Archaea and Eukaryotes are basic. Bacteria can function and reproduce as single cells but often combine into multicellular colonies. Bacteria are also surrounded by a cell wall. Archaea differ from bacteria in their genetics and biochemistry. Their cell membranes are made with different material than bacteria. Just like bacteria, archaea are also single cell and are surrounded by a cell wall. Eukaryotes, unlike bacteria and archaea, contain a nucleus. And like bacteria and archaea, eukaryotes have a cell wall. The Gram stain is a system used to characterize bacteria based on the structural characteristics of their cell walls. A Gram-positive cell will stain purple if cell walls are thick and a Gram-negative cell wall appears pink. Most bacteria can be classified as belonging to one of four groups (Gram-positive cocci, Gram-positive bacilli, Gram-negative cocci, and Gram-negative bacilli) (Phenotypic analysis. (n.d.).
The purpose of this project was to identify unknown bacteria species from a mixed culture. The two unknown species were initially plated onto Tryptic Soy Agar (TSA), Eosin Methylene Blue (EMB), Mannitol Salt Agar (MSA), and blood agar plates to distinguish between the two different bacteria using colony size, color, shape, and growth characteristics. By identifying and inoculating the differing types of colonies, the two unknown bacteria were purified and able to be tested
Among hospitalized patients around the world, Clostridium difficile is the primary source of infectious diarrhea. Previously, continuously unbalanced intestinal microbiota, usually due to antimicrobials, was deemed a precondition for developing the infection. However, recently, there have been alterations in the biology from virtually infecting the elderly population exclusively, wherein the microbiota in their guts have been interrupted by antimicrobials, to currently infecting individuals within of all age groups displaying no recent antimicrobial use. Furthermore, recent reports have confirmed critical occurrences among groups previously assumed to be of minimal risk—pregnant women, children, and individuals with no previous exposure to antimicrobials, for instance. Unfortunately, this Gram-positive, toxin-producing anaerobic bacterium is estimated to cost US critical care facilities $800 million per year at present, suggesting the need for effective measures to eliminate this nosocomial infection (Yakob, Riley, Paterson, & Clements, 2013).
...standing the nature of relationship between the residing microbes inside human cells and about their function is very important to put an end to this war and to live in peace with the natural organisms that are benefitting human body and their survival has become our primary importance.
Is fecal microbiota transplant (FMT) effective treatment for patients with Ulcerative Colitis (UC). UC is a chronic inflammation of the large intestine. FMT is used to describe the delivery of a healthy donors stool into a patient via enema, colonoscope, or nasogastric tube. In the past several years FMT has been used for an alternative treatment with patients diagnosed with Clostridium difficile (CD). The purpose of this paper is to discuss if FMT is just as effective in treating UC over just medication. The articles below will give insight if this theory is true or not.
Every human has microbiomes that are personalized for the individual and are extremely important to maintaining a good health standing, however, these microbiomes can be capable of contracting a disease. One of the most common areas for these microbiomes to contract something that could be harmful to the person’s health is called the oral microbiomes, which are found in the mouths of humans. Within the biofilms of the oral cavity, rests these oral microbiomes that maintain a healthy equilibrium in the mouth. However, if not taken care of properly, oral microbiomes can be taken over by a pathogen that can quickly turn the state of the person’s mouth from a healthy equilibrium to a very unhealthy equilibrium (1). Some bacteria found in the oral cavity can be an extremely danger.
... a large role and impact significantly on how the body reacts to other organisms and disease. The study was biased as only one ethnical group was tested on the Chinese, perhaps the suggestion of carrying out the same study on other ethnical groups could be explored and studied, by doing this it can be seen if the ethnical group impacts the gut microbes, and if a change in that would cause an effect on type 2 diabetes patients. The study made great use of all the different orthologues, categories and many different data bases, while compiling their own references and taxonomic indexes, while this was great, refereeing to too many data bases may confuse areas that you are looking at examining, it's important to keep on topic and evaluate in appropriately. The study left many others avenues opened and lots more research can be done to further understand their finding.
Microbes are major key components in both are homes and industrial food preparation. There are number of lactic acid which is a form of bacteria which is a large group of beneficial bacteria used in certain foods while they are getting prepared such as yogurt, cheese, sour cream, butter milk and other type of fermented milk products. Things such as vinegars are produced by bacterial acetic acid fermentation. Yeast is also major use in the making of beer and wine and also for the leaving of breads. This also involves fermentations to convert corn and other vegetable carbohydrates to also make beer, wine or gasohol but also bacteria is the agents of are other foods. Other fermented foods will include things such as soy sauce, olives and cocoa. (Microbes and human life, 2013) Single cell proteins are known as dried cells of microbes which are used in protein supplement shacks. They are also called “novel food” and “minifood”. The production of this requires micro-organisms which then serve as the protein source and then the substrate which is biomass which they grow on them. There are a number of both these sources that we are able to use for the production of single cell protein (SCP). The micro-organisms used belong to the following groups of Algae, Fungi and bacteria. (Slide Share, 2012)
Microbes are microscopic life forms, usually too small to be seen by the naked eye. Although many microbes are single-celled, there are also numerous multi-cellular organisms. The human body has 10-100 trillion microbes living on it, making it one giant super-organism. Since the first link between microbes and diseases was made, people have been advised to wash their hands. Scientists, however, have recently started to investigate more closely how the microbes that call the human body home affect our health. While some microbes cause disease, others are more beneficial, working with our bodies in many subtle ways.
The abnormal presence of bacterial growth can be inspected under a microscope. If the organism inspected is not the bacteria used in the experiment, it means that the growth of the bacterial culture investigated is absent. By using this method, contamination by foreign substances in the surrounding air can be ruled out and the results would be more accurate.