In the lab the reaction that took place was a synthesis reaction. A synthesis reaction, is a type of chemical reaction in which two or more simple substances combine to form a new product. The reactants may be elements or compounds. In this case it is a gas and a metal that will react and produce a compound. The general form of a synthesis reaction is, A + B → AB. In order for this lab to be done successful you need knowledge on, percent composition, the empirical and molecular formula, the law of conservation of mass, moles and molar mass, qualitative and quantitative. To begin, the percent composition of a compound is the percent of the total mass that each element has in that compound. Every compound would have a certain percent composition. To calculate percent composition of a compound, you would have to determine the total molecular mass of the compound. For example, for H2O the total molar mass would be 18.00g/mol. You would then input the mass of one of the elements and the molar pass into the equation % by weight (mass) of element = (total mass of element present ÷ total mass of compound) x 100 to find out the percent composition. So for Oxygen it would be, % of O = (16.00g ÷ 18.00g/mol) x 100 which would equal 88.9%. Therefore the percent composition of O in this compound is roughly 88.9%. Furthermore, the molecular formula is the number and types of atoms that are existing in a single molecule of a substance. The empirical formula also known as the simplest formula is the ratio of elements present in the compound. The key difference between these two is that the empirical formula shows the simplest positive integer ratio of atoms of each element present in a compound whereas the molecular formula of a compound is a way ...
... middle of paper ...
...arbon. A mole of water would have the molar mass of 18g/mol (H2O Molar Mass: (1.008x2) + 16.00 = 18.016g/mol). Additionally, The law of conservation of mass was first established in 1789 by a French chemist name Antoine Lavoisier. The law states that mass is neither created nor destroyed in any ordinary chemical reaction. Or more simply, the mass of substances produced (products) by a chemical reaction is always equal to the mass of the reacting substances (reactants). E.g., 1.00g carbon + 5.34g sulphur = 6.34g carbon disulphide. In any chemical reaction the mass of things produced will be the same like the reactant it used. Mass of things reacted equals mass of things produced. So if you react 1 kg of stuff, the result will also be 1 kg of stuff. The materials do not "disappear" nor are other materials “created". This applies as mass cannot be created nor destroyed.
2-ethyl-1,3-hexanediol. The molecular weight of this compound is 146.2g/mol. It is converted into 2-ethyl-1-hydroxyhexan-3-one. This compounds molecular weight is 144.2g/mol. This gives a theoretical yield of .63 grams. My actual yield was .42 grams. Therefore, my percent yield was 67%. This was one of my highest yields yet. I felt that this was a good yield because part of this experiment is an equilibrium reaction. Hypochlorite must be used in excess to push the reaction to the right. Also, there were better ways to do this experiment where higher yields could have been produced. For example PCC could have been used. However, because of its toxic properties, its use is restricted. The purpose of this experiment was to determine which of the 3 compounds was formed from the starting material. The third compound was the oxidation of both alcohols. This could not have been my product because of the results of my IR. I had a broad large absorption is the range of 3200 to 3500 wavenumbers. This indicates the presence of an alcohol. If my compound had been fully oxidized then there would be no such alcohol present. Also, because of my IR, I know that my compound was one of the other 2 compounds because of the strong sharp absorption at 1705 wavenumbers. This indicates the presence of a carbonyl. Also, my 2,4-DNP test was positive. Therefore I had to prove which of the two compounds my final product was. The first was the oxidation of the primary alcohol, forming an aldehyde and a secondary alcohol. This could not have been my product because the Tollen’s test. My test was negative indicating no such aldehyde. Also, the textbook states that aldehydes show 2 characteristic absorption’s in the range of 2720-2820 wavenumbers. No such absorption’s were present in my sample. Therefore my final product was the oxidation of the secondary alcohol. My final product had a primary alcohol and a secondary ketone
The experiment done in the lab supports the law of Conservation of Mass because we used the reactants and simply rearranged them to create the products without adding or removing anything. For the experiment we used candy and marshmallows. The green candy symbolized carbon atoms, the red ones hydrogen atoms, and the marshmallows represented oxygen atoms; we also used toothpicks which illustrated bonds keeping them all together. The chemical reaction for photosynthesis is the product of six carbon dioxide plus six water atoms is glucose (sugar) plus oxygen. We started by making the food into the reactants, the ingredients for the chemical reaction; six green candy drops and twelve marshmallows plus twelve red candy drops and six marshmallows.
For this experiment we have to use physical methods to separate the reaction mixture from the liquid. The physical methods that were used are filtration and evaporation. Filtration is the separation of a solid from a liquid by passing the liquid through a porous material, such as filter paper. Evaporation is when you place the residue and the damp filter paper into a drying oven to draw moisture from it by heating it and leaving only the dry solid portion behind (Lab Guide pg. 33.).
Mass Pb(NO2)3/ MW Pb(NO3)2 to find the mass of SO4, which equaled 0.1394g, then plugged into the percentage was exactly 55.75% SO4. The begging of the experiment requested that the percentage of SO4 in their fertilizer sample be found and that is exactly what was accomplished by this experiment, and the outcome, demonstrating the ability of my group to preform the requested task presented by the
The Gravimetric Stoichiometry lab was a two-week lab in which we tested one of the fundamental laws of chemistry; the Law of Conservation of Mass. The law states that in chemical reactions, when you start with a set amount of reactant, the product should theoretically have the same mass. This can be hard sometimes because in certain reactions, gases are released and it’s hard to measure the mass of a gas. Some common gases released in chemical reactions include hydrogen, carbon dioxide, oxygen and water vapor.
Mass of O = Mass of crucible, cover, KClO3 and MnO2 after heating (Step # 11) - Mass of crucible, cover, KClO3 and MnO2 before heating (Step # 5)
In her essay, “The Fourth State of Matter”, Jo Ann Beard ruminates over the idea of plasma as a state of matter while dealing with the disintegration of her marriage, the death of her dog, and the violent deaths of her friend and colleagues. The tone, dialogue, and reflections in her essay mirror the detached bewilderment Beard feels while trying to make sense of the loss around her.
To complete this lab several chemicals must be measured and transferred to test tubes. First 5.0 mL of 0.200 M Fe(NO3)3 must be diluted to a total volume of 50 mL in a flask. Next 0.0020 M SCN–. This solution is then added to 4 test tubes in 1 mm increments. Each test tube is then put in to
The mass of Mg + the mass of O2=mass of MgxOx. Knowing the mass of
... while weighing the reactants would try and avoid letting the reagents get in contact with apparatus that may not be necessary so as to avoid loss of some the substance and this way the exact mass would be achieved.
One possible source of experimental error could be not having a solid measurement of magnesium hydroxide nor citric acid. This is because we were told to measure out between 5.6g-5.8g for magnesium hydroxide and 14g-21g for citric acid. If accuracy measures how closely a measured value is to the accepted value and or true value, then accuracy may not have been an aspect that was achieved in this lab. Therefore, not having a solid precise measurement and accurate measurement was another source of experimental error.
Law of Matter means “ The principle that in any closed system subjected to no external forces the mass is constant irrespective of its changes in form.”(Google.com) In Accordance to the law of conservation of matter, matter is not either created or destroyed so you'll need the same amount of atoms after the change. Anything that has mass or matter can not be destroyed or created and that’s that! A cigarette that is burning turns to ash as it is being smoked because of the puffs that is being taken from it the smoke from the cigarette is floating in the air.
Stoichiometry is a chemical branch that studies amounts of substances that are involved in reactions. Stoichiometry will help you to find out how much of the mixture you will need, or how much you started with. The calculations of a stoichiometry problem depends on a balanced chemical equations. The factors of the balanced equations signifies the molar ratio (the number of moles of each reactant needed to form a certain numbers of moles of each product) of the reactants and products taking part in the reaction. From the atomic and molecular point of view the stoichiometry in a chemical reaction is very simple. For example, one mole of oxygen reacts with two moles of hydrogen,
Matter is defined as anything that occupies space and can be perceived by one or more senses; a physical body, a physical substance, or the universe as a whole. There are four distinct states of matter: solids, liquids, gases, and plasma. There are other states of matter such as Bose-Einstein condesates and neutron degenerate matter, but those states can only be found under extreme conditions.