Wait a second!
More handpicked essays just for you.
More handpicked essays just for you.
History of Cloning
E coli rate of growth in nutrient broth
Historical documents of cloning
Don’t take our word for it - see why 10 million students trust us with their essay needs.
Recommended: History of Cloning
Escherichia coli is a member of the family Enterobacteriaceae. It is a bacterium with a cell wall that has many components. Escherichia coli can live without oxygen which means that it is a facultative anaerobe. It is also capable of fermenting lactose under anaerobic conditions, and in the absence of alternative electron acceptors. There are effects and various factors that limit its growth rate. Its morphology consists of a rod-shaped gram negative bacteria that is commonly found in soil, water, vegetation, human intestines, as well as the intestines of animals. Its presence can be good or bad. The family Enterobacteriaceae consists of a large number of genera which are genetically and biochemically related to one another. Escherichia coli is a component of that family. This bacterium was discovered by a German pediatrician and bacteriologist named Theodor
It has an outer membrane that contains lipopolysaccharides, a periplasmic space with a peptidoglycan layer, and an inner cytoplasmic membrane. It also consists of adhesive fimbriae. Some strains of E. coli are piliated and are capable of accepting, as well as transferring plasmid to and from other bacteria. This enables the bacteria under stressful or bad conditions to survive. Although its structure is simple with only one chromosomal DNA and a plasmid, it can perform complicated metabolism to help maintain its cell division and cell growth. E. coli produce very rapidly; a single microscopic cell can divide to form a visible colony with millions of cells overnight (phschool.com). It is the preferred bacteria in most laboratories because it grows fast and easy, and can obtain energy from a wide variety of sources. Since the birth of molecular cloning, E. coli has been used as a host for introduced DNA sequences (biotechlearn.org.nz). In 1973, Boyer and Cohen showed that two short pieces of DNA could be cut and pasted together, and returned to
The unknown bacterium that was handed out by the professor labeled “E19” was an irregular and raised shaped bacteria with a smooth texture and it had a white creamy color. The slant growth pattern was filiform and there was a turbid growth in the broth. After all the tests were complete and the results were compared the unknown bacterium was defined as Shigella sonnei. The results that narrowed it down the most were the gram stain, the lactose fermentation test, the citrate utilization test and the indole test. The results for each of the tests performed are listed in Table 1.1 below.
Table 6 shows the results of the biochemical tests. The isolate can obtain its energy by means of aerobic respiration but not fermentation. In the Oxidation-Fermentation test, a yellow color change was produced only under both aerobic conditions, indicating that the EI can oxidize glucose to produce acidic products. In addition to glucose, the EI can also utilize lactose and sucrose, and this deduction is based on the fact that the color of the test medium broth changed to yellow in all three Phenol Red Broth tests. These results are further supported by the results of the Triple Sugar Iron Agar test. Although the EI does perform fermentation of these three carbohydrates, it appears that this bacterium cannot perform mixed acid fermentation nor 2,3-butanediol fermentation due to the lack of color change in Methyl Red and Vogues-Proskauer
E. Coli 0157, written by Mary Heersink, is a nerve-racking, adrenaline-filled story of a mother's experience with a then unknown deadly bacteria. The book brings up many reactions in its readers, especially the questioning of the practice of doctors in hospitals. The reader's knowledge base of scientific procedures in emergency centers was widened as well as the knowledge of how to the human body reacts to different agents in its system.
The purpose of this study is to identify an unknown bacterium from a mixed culture, by conducting different biochemical tests. Bacteria are an integral part of our ecosystem. They can be found anywhere and identifying them becomes crucial to understanding their characteristics and their effects on other living things, especially humans. Biochemical testing helps us identify the microorganism present with great accuracy. The tests used in this experiment are rudimentary but are fundamental starting points for tests used in medical labs and helps students attain a better understanding of how tests are conducted in a real lab setting. The first step in this process is to use gram-staining technique to narrow down the unknown bacteria into one of the two big domains; gram-negative and gram-positive. Once the gram type is identified, biochemical tests are conducted to narrow down the specific bacterial species. These biochemical tests are process of elimination that relies on the bacteria’s ability to breakdown certain kinds of food sources, their respiratory abilities and other biochemical conditions found in nature.
ABSTRACT: Water samples from local ponds and lakes and snow runoff were collected and tested for coliform as well as Escherichia coli. Humans as well as animals come into contact with these areas, some are used for recreational activities such as swimming and some are a source of drinking water for both animals and humans The main goal of this experiment was to see which lakes, snow run off and ponds tested positive for coliform or Escherichia coli and to come up with some reasoning as to why. It was found that the more remote pond with less contact contained the most Escherichia coli. However, another lake that many swim in and use as their drinking water indeed tested positive for a small amount of Escherichia coli. The two samples from the snow showed negative results for both coliform and Escherichia coli and the two more public ponds that aren’t as commonly used as a source of human drinking water but animal drinking water tested in the higher range for coliforms but in the little to no Escherichia coli range. It was concluded that the remote pond should be avoided as it’s not a safe source of drinking water for humans or animals. Other than that, the the other ponds are likely to be safe from Escherichia coli, but coliforms are a risk factor.
Bacteria play a large role in our health, the environment, and most aspects of life. They can be used in beneficial ways, such as decomposing wastes, enhancing fertilizer for crops, and breaking down of substances that our bodies cannot. However, many bacteria can also be very harmful by causing disease. Understanding how to identify bacteria has numerous applications and is incredibly important for anyone planning to enter the medical field or begin a career in research. Having the background knowledge of identifying an unknown bacteria may one day aid healthcare professionals diagnose their patient with a particular bacterial infection or help researchers determine various clinical, agricultural, and numerous other uses for bacteria.
E. Coli and other foodborne illnesses are something that should be of major concern to everybody, becasue nobody is safe from it. It is not something that can be prevented or
The domain for Klebsiella is Bacteria, it is in the Proteobacteria phylum, Gammaproteobacteria class, Enterobacteriales is the Order, the family is Enterobacteriacaea, the Genus is Klebsiella, and finally the species is Klebsiella pneumonia.
Enterococcus faecalis species is known to be the most common of Enterococci. Enterococcus faecalis is a gram positive bacteria. It is Non-Acid Fast. There are no endospores, but capsules are present. Enterococcus faecalis or Enterococci live within our GI tract, they also can be found in the mouth and vagina. They normally live inside our intestines without problems, the problem occurs when Enterococcus faecalis leaves our intestines, it can create an infection in the blood, urine, or in wounds. E. faecalis can cause a problem in people with a lowered immune system because they are more infection prone for example cancer patients, people on dialysis, people who have HIV or AIDS, transplant patients, etc. Interesting note about E. faecalis is
Urinary tract infection is one of the most common infections as cited by the National Hospital Ambulatory Medical Care Survey that can affect both pediatrics and adults [4,6]. Locally, this type of infection was ranked as fourth leading cause of Morbidity in Iloilo City [15]. Such infections can be acquired either as health care associated or in the community. The cause of such infection also includes the following but not limited to poor hygiene, sex, instrumentation, anatomic structure, etc. [6]and Out of the several causative agents, Escherichia coli and other coliforms played as major causative agents[7,10].
E. coli are bacteria that can cause an infection in various parts of your body, including your intestines. E. coli bacteria normally live in the intestines of people and animals. Most types of E. coli do not cause infections, but some produce a poison (toxin) that can cause diarrhea. Depending on the toxin, this can cause mild or severe diarrhea.
E. coli, short for Escherichia coli, normally live within the digestive system of humans and animals. Most variants of this bacteria are mostly benign and are actually essential for digestive health in people and animals. But there is the more infamous and most dangerous strain of E. coli, notorious for poisoning people and causing serious symptoms and even death. It has been labelled as E. coli O157:H7, discovered in 1982. This specific strain produces a toxin with the name Shiga that causes symptoms such as kidney failure, bloody diarrhea, and death. There have been outbreaks of O157:H7 in the US, Canada, Europe, South Africa, and Eastern Asia. These types of E. coli are labelled as pathogenic, meaning they can spread and cause illness outside
The birth of genetic engineering and recombinant DNA began in Stanford University, in the year 1970 (Hein). Biochemistry and medicine researchers were pursuing separate research pathways, yet these pathways converged to form what is now known as biotechnology (Hein). The biochemistry department was, at the time, focusing on an animal virus, and found a method of slicing DNA so cleanly that it would reform and go on to infect other cells. (Hein) The medical department focused on bacteria and developed a microscopic molecular messenger, that could not only carry a foreign “blueprint”, or message, but could also get the bacteria to read and copy the information. (Hein) One concept is needed to understand what happened at Stanford: how a bacterial “factory” turns “on” or “off”. (Hein) When a cell is dividing or producing a protein, it uses promoters (“on switches”) to start the process and terminators (“off switches”) to stop the process. (Hein) To form proteins, promoters and terminators are used to tell where the protein begins and where it ends. (Hein) In 1972 Herbert Boyer, a biochemist, provided Stanford with a bacterial enzyme called Eco R1. (Hein) This enzyme is used by bacteria to defend themselves against bacteriophages, or bacterial viruses. (Hein) The biochemistry department used this enzyme as a “molecular scalpel”, to cut a monkey virus called SV40. (Hein) What the Stanford researchers observed was that, when they did this, the virus reformed at the cleaved site in a circular manner. It later went on to infect other cells as if nothing had happened. (Hein) This proved that EcoR1 could cut the bonding sites on two different DNA strands, which could be combined using the “sticky ends” at the sites. (Hein). The contribution towards genetic engineering from the biochemistry department was the observations of EcoR1’s cleavage of
Bacterial cells, like plant cells, are surrounded by a cell wall. However, bacterial cell walls are made up of polysaccharide chains linked to amino acids, while plant cell walls are made up of cellulose, which contains no amino acids. Many bacteria secrete a slimy capsule around the outside of the cell wall. The capsule provides additional protection for the cell. Many of the bacteria that cause diseases in animals are surrounded by a capsule. The capsule prevents the white blood cells and antibodies from destroying the invading bacterium. Inside the capsule and the cell wall is the cell membrane. In aerobic bacteria, the reactions of cellular respiration take place on fingerlike infoldings of the cell membrane. Ribosomes are scattered throughout the cytoplasm, and the DNA is generally found in the center of the cell. Many bacilli and spirilla have flagella, which are used for locomotion in water. A few types of bacteria that lack flagella move by gliding on a surface. However, the mechanism of this gliding motion is unknown. Most bacteria are aerobic, they require free oxygen to carry on cellular respiration. Some bacteria, called facultatibe anaerobes can live in either the presence or absence of free oxygen. They obtain energy either by aerobic respiration when oxygen is present or by fermentation when oxygen is absent. Still other bacteria cannot live in the presence of oxygen. These are called obligate anaerobes. Such bacteria obtain energy only fermentation. Through fermentation, different groups of bacteria produce a wide variety of organic compounds. Besides ethyl alcohol and lactic acid, bacterial fermentation can produce acetic acid, acetone, butyl alcohol, glycol, butyric acid, propionic acid, and methane, the main component of natural gas. Most bacteria are heterotrophic bacteria are either saprophytes or parasites. Saprophytes feed on the remains of dead plants and animals, and ordinarily do not cause disease. They release digestive enzymes onto the organic matter. The enzymes breakdown the large food molecules into smaller molecules, which are absorbed by the bacterial cells. Parasites live on or in living organisms, and may cause disease. A few types of bacteria are Autotrophic, they can synthesize the organic nutrients they require from inorganic substances. Autotrophic bacteria are either photosynthetic or Chemosynthetic. The photosynthetic bacteria contain chlorophyll that are different from the plant chlorophyll. In bacterial photosynthesis, hydrogen is obtained by the splitting of compounds other than water.
It is a single-celled organism that is not visible to the human eye, which means it can only be seen with a microscope. Bacteria are classified as Prokaryotes. They make their own food from the sunlight and can absorb food from the materials that they live on.