One of the current questions in physics is whether or not neutrinos have mass and what this mass is. Neutrinos are subatomic particles that have no electrical charge and interact only via the weak nuclear force. They are products of radioactive decay processes, and thus are produced abundantly in our Sun, our atmosphere, and in other astrophysical sources such as supernovae and active galactic nuclei. Millions and millions of them are crossing through the Earth every second, but only very few of them will interact with the Earth. In practice you can say they are invisible. But fortunately we can detect them by building a very large detector and waiting long enough.
There are several reasons to search for a possible non-zero neutrino mass. Fermion masses in general are one of the major mysteries/problems of the standard model. Observation or nonobservation of the neutrino masses could introduce a useful new perspective on the subject. Nonzero neutrino masses are predicted in most extensions of the standard model. They therefore constitute a powerful probe of new physics. Also, there may be a hot dark matter component to the universe. If so, neutrinos would be (one of) the most important things in the universe. The observed spectral distortion and deficit of solar neutrinos is most easily accounted for by the oscillations/conversions of a massive neutrino.
The largest neutrino detector is the Super-Kamiokande and is located in the Kamioka Mine, about 200 km north of Tokyo. It is water cerenkov detector, which means it is a large (40 meters diameter by 40 meters tall) tank of ultra-pure water viewed by thousands of sensitive phototubes. Super-Kamiokande will address some of the most important open questions in physics today, such as: why does the Sun appear to produce only half as many neutrinos as theory would predict? Do neutrinos have mass? Do protons decay, as predicted by Grand Unification Theory?
One source of neutrinos are nuclear reactions. Inside our Sun nuclear reactions are occurring on a gigantic scale. Lots of neutrinos are produced. There are enough of them, that when they reach the Earth they can still be detected. Since physicists can calculate how many of them should be seen, there is a big problem because we see too few, roughly two times too few. This is so called the solar neutrino problem.
There can be several solutions to the puzzle. One is that we do not understand the Sun well enough.
The Gravimetric Stoichiometry lab was a two-week lab in which we tested one of the fundamental laws of chemistry: the Law of Conservation of Mass. The law states that in chemical reactions, when you start with a set amount of reactant, the product should theoretically have the same mass. This can be hard sometimes because in certain reactions, gases are released and it’s hard to measure the mass of a gas. Some common gases released in chemical reactions include hydrogen, carbon dioxide, oxygen and water vapor. One of the best methods for determining mass in chemistry is gravimetric analysis (Lab Handout).
Physicists started to realize that stable nuclei can be converted to unstable nuclei. Through such process, they discovered that heavy nuclei can undergo nuclear fission. While testing, they added a neutron to an isotope of Uranium 235. This resulted Uranium 235 to become unstable and break down into Barium and Krypton, releasing two to three more neutrons. The breakdown of Uranium 235 is called “fission”.
Cosmic rays are high energy charged particles, originating in outer space, that travel at nearly the speed of light and strike the Earth from all directions. The term "cosmic rays" usually refers to galactic cosmic rays, which originate in sources outside the solar system, distributed throughout our Milky Way galaxy. However, this term has also come to include other classes of energetic particles in space, including nuclei and electrons accelerated in association with energetic events on the Sun (called solar energetic particles), and particles accelerated in interplanetary space. Co...
Stars explode at the end of their lifetime, sometimes when they explode the stars leave a remnant of gasses and, dust behind. What the gasses come together to form depend on the size of the remnant. If the remnant is less than 1.4 solar masses it will become a white dwarf, a hot dead star that is not bright enough to shine. If the remnant is roughly 1.4 solar masses, it will collapse. “The protons and electrons will be squashed together, and their elementary particles will recombine to form neutrons”. What results from this reaction is called a neut...
Our Sun continuously converts hydrogen into helium and with this process it provides the essentials for life processes. In doing this it controls “our climate, provides light, raises tides, and drives the food chain” (Schaefer 34). Our Sun also has influenced many beliefs now and in the past. History has documented Sun worshipping religions while many current societies use solar calendars (Schaefer 34).
Our sun is the central pivot point to which or entire planet and solar system is built around. With out it all life on our planet would cease to exist. Within this paper we will explore how our Sun and solar system formed and came to resemble what we see today.
Gamma radiation/emission – Gamma ray emission can be found when either alpha or beta decay occurs. Gamma rays are high energy electromagnetic rays. Gamma radiation is just the excess energy of the reaction being shed off, gamma rays do not effect mass numbers or atomic numbers. 6027Co 6028Ni + 0-1e + y
is very large. In practical units, the fission of 1 kg (2.2 lb) of uranium-235
The year 2012 was not only memorable to physicists for its breakthroughs, which include the galaxy motion cluster, neutrino-based communication or the method to see through opaque materials. But it is memorable because 2012 was the year that the physicists working in the Large Hadron Collider announced the detection of the Higgs boson particle.
We probably won’t think of the solar
Nuclear fusion occurs when two atomic nuclei collide with enough energy to bind together to form one nucleus. Nuclear fusion occurs in the core of our sun, and is the source of its tremendous heat. In the sun hydrogen nuclei, single protons, fuse together and form a new nucleus. In the conversion, a small amount of mass is converted into energy. It is this energy that heats the sun.
Whilst there are clear arguments for and against nuclear energy, the future is promising; with scientists working on potential breakthroughs such as nuclear fusion, and the design of newer and better and reactors. Nuclear fusion is a reaction which causes the nuclei of atoms to collide and form a new atomic nucleus. It is essentially what heats the sun and stars and would produce no long-lived radioactive waste.22 If scientists could control the process of atomic fusion then it could become a never ending energy source for future use.
... of hydrogen gas in the core of sun that scientists are hardly concluded about its depletion. The earth receives an incredible supply of solar energy from the sun which is a fusion reactor that has been burning over 4 billon years. It provides enough energy in one minute to supply the world’s energy need for one year. In one day, it provides more energy that due current population would consume in 27 years. In fact, the amount of solar radiation striking the earth over a 3 day period is equivalent to the energy stored in all fossil energy sources.
The idea that dark matter exists becomes very more realistic when things such as this are occurring. Dark matter is thought to be a bit like a alternate gravitational force that keeps objects in space, galaxies for example, all together. The nature of dark matter, however, is unknown. There is a number of theories, of course, for example: Brown Dwarfs, Supermassive black holes, and new forms of matter are all speculated as the nature of dark matter. The elemental composition of our universe has changed drastically over the last few Eons. New forms of matter discovered by particle physicists, scientists who work to understand the forces of nature and the composition of matter, have theorized that there are new forces and new types of particles. One of the main reasons for the construction of "supercolliders" is to try to create dark matter in a lab. Since the universe was very dense and hot at the beginning of the Big Bang, the universe itself was basically a particle
would be absorbed and the earth would be extremely cold. When too many rays are absorbed, the