Wait a second!
More handpicked essays just for you.
More handpicked essays just for you.
The negative effect of nuclear power
The negative effect of nuclear power
Physical science nuclear energy
Don’t take our word for it - see why 10 million students trust us with their essay needs.
Introduction:
Nuclear energy is generated by a process called fission. Fission occurs within the reactor of a nuclear power plant when a neutron is fired at an atom of uranium causing it to split and release subsequent neutrons.1 These are able to crash into other uranium atoms causing a chain reaction and releasing a great deal of heat energy.
Advantages and Disadvantages:
As one of the greatest alternatives to fossil fuels, an important advantage of nuclear energy is the significantly lower emission rate of CO2 in comparison to plants which use coal and natural gas.2 Nuclear power is not reliant on fossil fuels and therefore producing energy by this method reduces pollution and the contribution to climate change. However, whilst the actual process of generating energy releases few emissions, uranium must be mined and purified and in the past this has not always been an environmentally clean process.2 Ultimately, uranium will one day run out, but nuclear reactors are versatile and may also run on Thorium. Despite being finite, this would allow nuclear power stations to function for a longer period of time.
The energy produced from nuclear reactions is very dense, providing almost ten million times more energy per atom than fossil fuels.2 In addition, nuclear plants are cost competitive, being no more expensive than alternative sources. Although there are huge initial start up costs, the only other expenses are the costs to process nuclear fuel, safely remove and store radioactive waste and daily upkeep of the plant.2
The greatest disadvantages of nuclear energy are the risks posed to mankind and the environment by radioactive materials. ‘On average a nuclear plant annually generates 20 metric tons of used nuclear fuel cla...
... middle of paper ...
...he building of four nuclear plants to try and ease the transition from finite fuels.21The reactors used in these plants will be able to last longer and will run on 17% less uranium per energy unit than reactors in use currently. EDF estimate that their new reactors are capable of supplying up to 30% of the UK’s total energy. 21
Whilst there are clear arguments for and against nuclear energy, the future is promising; with scientists working on potential breakthroughs such as nuclear fusion, and the design of newer and better and reactors. Nuclear fusion is a reaction which causes the nuclei of atoms to collide and form a new atomic nucleus. It is essentially what heats the sun and stars and would produce no long-lived radioactive waste.22 If scientists could control the process of atomic fusion then it could become a never ending energy source for future use.
All these effects were the cause of the discovery of nuclear fission and its properties. Nuclear Fusion Nuclear fusion is the process used by the sun and the stars in our solar system to produce their energy. Fusion involves smashing hydrogen atoms together at high velocities to form helium, and the matter is made into energy.
Nuclear energy must be a consideration for the future with the rapidly depleting supply of fossil fuels. This type of energy can be created through nuclear fission and nuclear fusion. Nuclear fission is the splitting of a heavy atom into two or more parts, releasing huge amounts of energy. The release of energy can be controlled and captured for generating electricity. Nuclear fusion involves bombarding hydrogen atoms together to form helium. In the long run, nuclear fusion has greater potential than fission.
There are many sources of energy today, and the best source of it is constantly being sought after, one source stands out above the rest. Nuclear energy is simple in theory, yet it may be one of the most controversial sources of power. Nuclear energy works using reactors built to split the atoms (nuclear fission) of the fuel to produce heat. This heat evaporates the cooling agent (usually water) into steam which turns turbines to create electricity. Nuclear energy should be allowed, because it produces an abundance of electricity, as well as being a clean source of energy with no harmful emissions. Nuclear energy is the future of clean, environmentally friendly energy.
Nuclear power has always been a controversial issue because of its inherent danger and the amount of waste that the plants produce. Once considered a relatively safe form for generating energy, nuclear power has caused more problems than it has solved. While it has reduced the amount of traditional natural resources (fossil fuels), used to generate power like coal, wood, and oil, nuclear generating plants have become anachronisms. Maintaining them and keeping them safe has become a problem of immense proportion. As the plants age and other technology becomes available, what to do with these “eyesores” is a consuming issue for many government agencies and environmental groups. No one knows what to do about the problem and in many areas of the world, another nuclear meltdown is an accident waiting to happen. Despite a vast array of safety measures, a break in reactor pipe or a leak in a containment vessel, could spell another environmental disaster for the world.
Nuclear power has no place in having a safe, clean, sustainable future. Today, the manufacturing of nuclear power plants has become a critical topic throughout the world that many strongly believe should be stopped. Nuclear Power is not safe anywhere in the world nor is it environmentally friendly. Nuclear power plants are truly something that could cause mass destruction in the world and has the potential to wipe out a whole country with ease. Despite proponents’ that claim that nuclear power is safe, there is a history that proves otherwise and marks a number of disasters caused by nuclear power plants.
Not only is nuclear power friendly to the environment, but it is almost always available, and many countries are starting to use it more. Renewable energy sources like solar and wind en...
Nuclear energy is energy produced in a nuclear reaction. This reaction can be naturally produced or can be artificially made. Both fission and fusion are examples of nuclear energy.
Nuclear power has grown to be a big percentage of the world’s energy. As of January 18, 2013 in 31 countries 437 nuclear power plant units with an installed electric net capacity of about 372 GW are in operation and 68 plants with an installed capacity of 65 GW are in 15 countries under construction. As of end 2011 the total electricity production since 1951 amounts to 69,760 billion kWh. The cumulative operating experience amounted to 15, 15,080 years by end of 2012. (European Nuclear Society) The change that nuclear power has brought to the world has led to benefits in today’s energy’s usage.
the U.S two thirds of respondents don’t want to live 10 miles close to a nuclear reactor. Utilities find nuclear power less, there are new solar photovoltaic installation in the U.S are springing up.
To begin, nuclear power is produced by nuclear fission, which is the splitting of an atom to start a chain reaction (“11 Facts”). This chain reaction produces massive amounts of heat. Nuclear reactors take advantage of this heat by pumping water into the reactor, which in turn produces steam. The steam then becomes pressurized through a pipeline and exits into a turbine (“How do Nuclear”). The pressurized steam causes the turbine blades to spin, producing power which is linked to a generator for use in the main power lines. When the steam passes the turbine blades, it goes past cooled pipes and condensates (“How do Nuclear”). After the condensation process is finished and the steam reverts back to water, it is pumped into the reactor again, thus completing the process of producing nuclear-based power.
Nuclear fission is the process in which a nucleus spits into two or more smaller nuclei. Nuclear reactors use a controlled chain reaction to produce electricity. The rate at which the chain reaction occurs can be controlled by manipulating the amount of non-fissionable material present. Uranium-235 is the only naturally occurring isotope that undergoes fission. The energy released through nuclear fission is 20 million times more than the energy released burning fossil fuels. The critical mass is the maximum size a sample of uranium ore can reach. If the sample is larger then the critical mass it will start an uncontrolled reaction. 99.3% of uranium ore is made up of uranium-238 and 0.7% is uranium-235.
The use of nuclear energy has increased in the United States since 1973. Nuclear energy's share of U.S. electricity generation has grown from 4 percent in 1973 to 19 percent in 1998. This is excellent news for the environment. Nuclear energy and hydropower are the cleanest large-scale means of electricity production. Since nuclear power plants do not burn fuel, they emit no combustion byproducts—like carbon dioxide—into the atmosphere (www.nei.org). Nuclear power can come from the fission of Uranium, plutonium or thorium or the fusion of hydrogen into helium. Today uranium (U-235 and U-238) is most commonly used in the production of nuclear energy. The expa...
Power from nuclear fusion reactors would be a welcome achievement for the 21st century, and at the current rate of progress it seems likely that before the end of the new century energy will be available from nuclear fusion. It is estimated that it will take over a decade from the time a sustainable fusion reaction is achieved before fusion power will be available for use. But the attention being devoted to research is strong, the experiments are coming closer to fruition, and we are coming closer to having an almost limitless supply of energy.
The energy industry is beginning to change. In today’s modern world, governments across the globe are shifting their focuses from traditional sources of power, like the burning coal and oil, to the more complex and scientific nuclear power supply. This relatively new system uses powerful fuel sources and produces little to no emissions while outputting enough energy to fulfill the world’s power needs (Community Science, n.d.). But while nuclear power seems to be a perfect energy source, no power production system is without faults, and nuclear reactors are no exception, with their flaws manifesting in the form of safety. Nuclear reactors employ complex systems involving pressure and heat. If any of these systems dysfunctions, the reactor can leak or even explode releasing tons of highly radioactive elements into the environment. Anyone who works at or near a nuclear reactor is constantly in danger of being exposed to a nuclear incident similar to the ones that occurred at the Chernobyl and Fukushima Daiichi plants. These major accidents along with the unresolved problems with the design and function of nuclear reactors, as well as the economic and health issues that nuclear reactors present serve to show that nuclear energy sources are not worth the service that they provide and are too dangerous to routinely use.
Nuclear power, the use of exothermic nuclear processes to produce an enormous amount of electricity and heat for domestic, medical, military and industrial purposes i.e. “By the end of 2012 2346.3 kilowatt hours (KWh) of electricity was generated by nuclear reactors around the world” (International atomic energy agency Vienna, 2013, p.13). However, with that been said it is evident that the process of generating electricity from a nuclear reactor has numerous health and environmental safety issues.