Introduction Pierre de Fermat was born August 17, 1601 in Beaumont-de-Lomagne, France. After pursuing his bachelor in civil law from the University of Toulouse, he spent a great deal of time researching calculus and corresponding with other mathematicians. Fermat was perhaps best known for the “integrity of his commitment to the cause of mathematical truth” [1] and sought to establish himself as a legitimate mathematician aside from his main profession as a lawyer. He was rather political about his work and frequently disputed with René Descartes over matters of credibility and reputation. Fermat was prone to criticism from his contemporaries, who often viewed his problems as trivial. Nevertheless, many of his achievements were invaluable to Newton and Leibniz during the invention of calculus. Throughout the early 17th century, Pierre de Fermat made contributions that were revolutionary …show more content…
He determined that there was a finite amount of positive integers less than any given positive integer, which led to the proposition famously known as Fermat’s Last Theorem. In modern notation, this contends that if a, b and c are integers greater than 0, and if n is an integer greater than 2, then there are no solutions to the equation: an + bn = cn . For instance, when n is equal to 1 or 2 there exists an infinite amount of integer solutions to the above equation. However, for n greater than or equal to 3, there are no natural numbers for which the statement is true. This equation could also be interpreted as a more general version of the Pythagorean Theorem, as both are concerned with the sums of squares of whole numbers. Since Fermat did not publish his work, his last theorem was discovered in a copy of Diophantus’ Arithmetica without a formal proof. In 1994, British mathematician Andrew Wiles officially proved Fermat’s Last Theorem by connecting elliptic curves with modular
Dava Sobel’s novel, Longitude: The True Story Of A Lone Genius Who Solved The Greatest Scientific Problem Of His Time is a history of the scientific battle to obtain a method of finding the exact longitude of a specific location. Knowing the longitude of a location may seem unimportant, but in fact it is vital. To fully understand the work that went into this effort, first, one must understand the basic principles for determining location on Earth.
The development of this mathematical system would lay the foundations for Descartes other philosophical discoveries in which his most significant contributions to the modern world would be made. In the year 1619, Descartes left his mentor Beeckman and joined the Emperor for the Holy Roman Empire Ferdinand V. During his time in the army Descartes had three distinct dreams in which he believed gave him a path to follow later on in life. The basis of these dreams was truly the break between the classics th...
Ball, Rouse. “Sir Isaac Newton.” A Short Account of the History of Mathematics. 4th ed. Print.
John Forbes Nash Jr. was born on June 13, 1928 in Bluefield, West Virginia. John grew up to be one of the greatest mathematicians of his generation. Nash’s works in game theory, differential geometry, and particle differential equations are now used across the world in things such as: market economics, evolutionary biology, accounting, computing, politics, military theory, as well as others.
Pierre de Fermat Pierre de Fermat was born in the year 1601 in Beaumont-de-Lomages, France. Mr. Fermat's education began in 1631. He was home schooled. Mr. Fermat was a single man through his life. Pierre de Fermat, like many mathematicians of the early 17th century, found solutions to the four major problems that created a form of math called calculus. Before Sir Isaac Newton was even born, Fermat found a method for finding the tangent to a curve. He tried different ways in math to improve the system. This was his occupation. Mr. Fermat was a good scholar, and amused himself by restoring the work of Apollonius on plane loci. Mr. Fermat published only a few papers in his lifetime and gave no systematic exposition of his methods. He had a habit of scribbling notes in the margins of books or in letters rather than publishing them. He was modest because he thought if he published his theorems the people would not believe them. He did not seem to have the intention to publish his papers. It is probable that he revised his notes as the occasion required. His published works represent the final form of his research, and therefore cannot be dated earlier than 1660. Mr. Pierre de Fermat discovered many things in his lifetime. Some things that he did include: -If p is a prime and a is a prime to p then ap-1-1 is divisible by p, that is, ap-1-1=0 (mod p). The proof of this, first given by Euler, was known quite well. A more general theorem is that a0-(n)-1=0 (mod n), where a is prime...
Leonardo da Vinci was an Italian Renaissance man that was born in 1452 and lived to 1519. He was a true renaissance man is regarded as one of the greatest minds of the renaissance era, displaying skills in numerous diverse areas of study. While he is most famous for his paintings such as the Mona Lisa and the Last Supper, Leonardo is also renowned in the fields of civil engineering, chemistry, geometry, mathematics, mechanical engineering, optics, and physics, Making his biggest contributions to mathematics and engineering through his amazing inventions. Leonardo da Vinci was very far ahead of his time which is why most of his inventions were not made practical until someone reinvented later in time, when technology caught up to his ideas.
The argument in this paper that even though the onus of the discovery of calculus lies with Isaac Newton, the credit goes to Leibniz for the simple fact that he was the one who published his works first. Appending to this is the fact that the calculus wars that ensue was merely and egotistic battle between humans succumbing to their bare primal instincts. To commence, a brief historical explanation must be given about both individuals prior to stating their cases.
No other scholar has affected more fields of learning than Blaise Pascal. Born in 1623 in Clermont, France, he was born into a family of respected mathematicians. Being the childhood prodigy that he was, he came up with a theory at the age of three that was Euclid’s book on the sum of the interior of triangles. At the age of sixteen, he was brought by his father Etienne to discuss about math with the greatest minds at the time. He spent his life working with math but also came up with a plethora of new discoveries in the physical sciences, religion, computers, and in math. He died at the ripe age of thirty nine in 1662(). Blaise Pascal has contributed to the fields of mathematics, physical science and computers in countless ways.
His father taught his Latin but after a while saw his son’s greater passion towards mathematics. However, Andre resumed his Latin lessons to enable him to study the work of famous mathematicians Leonhard Euler and Bernoulli. While in the study of his father’s library his favorite study books were George Louis Leclerc history book and Denis Diderot and Jean Le Rond Encyclopedia, became Ampere’s schoolmasters (Andre). When Ampere finished in his father’s library he had his father take him to the library in Lyon. While there he studied calculus. A couple of weeks later he was able to do difficult treaties on applied mathematics (Levy, Pg. 135). Later in life he said “the new as much about mathematics when he was 18, than he knew in his entire life. His reading...
The invention of calculus started in the second half of the 17th Century. The few preceding centuries, known as the Renaissance period, marked a time of prosperity in different areas throughout Europe. Different philosophies emerged which resulted in a new form of mindset. Science and art were still very much interconnected and intermingled at this time, as exemplified by the work of artists and scientists such as Leonardo da Vinci. It is no surprise that revolutionary work in science and
Fibonacci was born in approximately 1175 AD with the birth name of Leonardo in Pisa, Italy. During his life he went by many names, but Leonardo was the one constant. Very little is known of his early life, and what is known is only found through his works. Leonardo’s history begins with his father’s reassignment to North Africa, and that is where Fibonacci’s mathematical journey begins. His father, Guilielmo, was an Italian man who worked as a secretary for the Republic of Pisa. When reassigned to Algeria in about 1192, he took his son Leonardo with him. This is where Leonardo first learned of arithmetic, and was interested in the “Hindu-Arabic” numerical style (St. Andrews, Biography). In 1200 Leonardo ended his travels around the Mediterranean and returned to Pisa. Two years later he published his first book. Liber Abaci, meaning “The Book of Calculations”.
Born in the Netherlands, Daniel Bernoulli was one of the most well-known Bernoulli mathematicians. He contributed plenty to mathematics and advanced it, ahead of its time. His father, Johann, made him study medicine at first, as there was little money in mathematics, but eventually, Johann gave in and tutored Daniel in mathematics. Johann treated his son’s desire to lea...
Calculus, the mathematical study of change, can be separated into two departments: differential calculus, and integral calculus. Both are concerned with infinite sequences and series to define a limit. In order to produce this study, inventors and innovators throughout history have been present and necessary. The ancient Greeks, Indians, and Enlightenment thinkers developed the basic elements of calculus by forming ideas and theories, but it was not until the late 17th century that the theories and concepts were being specified. Originally called infinitesimal calculus, meaning to create a solution for calculating objects smaller than any feasible measurement previously known through the use of symbolic manipulation of expressions. Generally accepted, Isaac Newton and Gottfried Leibniz were recognized as the two major inventors and innovators of calculus, but the controversy appeared when both wanted sole credit of the invention of calculus. This paper will display the typical reason of why Newton was the inventor of calculus and Leibniz was the innovator, while both contributed an immense amount of knowledge to the system.
Burton, D. (2011). The History of Mathematics: An Introduction. (Seventh Ed.) New York, NY. McGraw-Hill Companies, Inc.
The 17th Century saw Napier, Briggs and others greatly extend the power of mathematics as a calculator science with his discovery of logarithms. Cavalieri made progress towards the calculus with his infinitesimal methods and Descartes added the power of algebraic methods to geometry. Euclid, who lived around 300 BC in Alexandria, first stated his five postulates in his book The Elements that forms the base for all of his later Abu Abd-Allah ibn Musa al’Khwarizmi, was born abo...