No other scholar has affected more fields of learning than Blaise Pascal. Born in 1623 in Clermont, France, he was born into a family of respected mathematicians. Being the childhood prodigy that he was, he came up with a theory at the age of three that was Euclid’s book on the sum of the interior of triangles. At the age of sixteen, he was brought by his father Etienne to discuss about math with the greatest minds at the time. He spent his life working with math but also came up with a plethora of new discoveries in the physical sciences, religion, computers, and in math. He died at the ripe age of thirty nine in 1662(). Blaise Pascal has contributed to the fields of mathematics, physical science and computers in countless ways.
Blaise Pascal has contributed to the field of mathematics in countless ways imaginable. His focal contribution to mathematics is the Pascal Triangle. Made to show binomial coefficients, it was probably found by mathematicians in Greece and India but they never received the credit. To build the triangle you put a 1 at the top and then continue placing numbers below it in a triangular pattern. Each number is the two numbers above it added together (except for the numbers on the edges which are all ‘1’). There are patterns within the triangle such as odds and evens, horizontal sums, exponents of 11, squares, Fibonacci sequence, and the triangle is symmetrical. The many uses of Pascal’s triangles range from probability (heads and tails), combinations, and there is a formula for working out any missing value in the Pascal Triangle: . It can also be used to find coefficients in binomial expressions (put citation). Another staple of Pascal’s contributions to projective geometry is a proof called Pascal’s theore...
... middle of paper ...
...ere are gears used to select which numbers you want. Though Charles Babbage will always be credited with making the first “true” computer, and Bill Gates with popularizing it, Blaise Pascal will always have a place among the first true innovator of the computer. There is even a programming language called Pascal or Object Pascal which is an early computer program.
To conclude, these are three contributions Blaise Pascal has made to our world. These are through the fields of mathematics, physical science, and computers. Without Pascal coming up with his important Pascal triangle or his discoveries in hydrostatics, the world would lack of a lot of things we take for granted. It is easy to thank the big names such as Newton and Einstein, but when you look into history and find men such as Pascal who have been hidden for doing great things it is time to reconsider.
Blaise Pascal was born on 19 June 1623 in Clermont Ferrand. He was a French mathematician, physicists, inventor, writer, and Christian philosopher. He was a child prodigy that was educated by his father. After a horrific accident, Pascal’s father was homebound. He and his sister were taken care of by a group called Jansenists and later converted to Jansenism. Later in 1650, the great philosopher decided to abandon his favorite pursuits of study religion. In one of his Pensees he referred to the abandonment as “contemplate the greatness and the misery of man”.
Overall George Boole’s life was filled with many moments of success, but was Boole an advance towards where mathematics is today? As many times that Boole was recognized his work finally paid off. At one point even Albert Einstein used Boole’s methods of mathematics to continue to advance of his own mathematics and sciences.
Blaise Pascal was born on June 19, 1623. Pascal was a mathematician along with a Christian philosopher who wrote the Pensees which included his work called Pascal’s wager. The crucial outline of this wagers was that it cannot be proved or disprove that God does exists. There are four main parts to the wager that include his reasoning to that statement. It has been acknowledged that Pascal makes it clear that he is referring to the Christian God in his wager. This is the Christian God that promises his people will be rewarded with eternal life along with infinite bliss.
Blaise Pascal lived during a time when religion and science were clashing and challenging previous discoveries and ideas. Pascal lived from 1623 to 1662 due to his untimely death at the age of thirty nine. The scientific community grew enormously and Pascal was a great contributor to this growth. The growth in the scientific community is known as the Scientific Revolution. He lived in a time where an absolute monarch came into power, King Louis the XIV. Louis XIV was a believer in “one king, one law, and one faith” (Spielvogel, 2012). Pascal saw the destruction of protestant practices in France and the growth and acceptance of scientific discoveries. He used the scientific method to refine previous experiments that were thought to be logical but Pascal proved otherwise and eventually led to Pascal’s Law. He spent his life devoted to two loves: God and science. Within his book, “Pensees,” Pascal argues and shares his thoughts about God, science, and philosophy.
Yang Hui has been found to be the oldest user of Pascal’s Triangle. But it is Blaise Pascal who around the year 1654 was credited for his extensive work on the many patterns of this triangle. Because of this people began to call it Pascal’s Triangle.
Computer engineering started about 5,000 years ago in China when they invented the abacus. The abacus is a manual calculator in which you move beads back and forth on rods to add or subtract. Other inventors of simple computers include Blaise Pascal who came up with the arithmetic machine for his father’s work. Also Charles Babbage produced the Analytical Engine, which combined math calculations from one problem and applied it to solve other complex problems. The Analytical Engine is similar to today’s computers.
If you have ever heard the phrase, “I think; therefore I am.” Then you might not know who said that famous quote. The author behind those famous words is none other than Rene Descartes. He was a 17th century philosopher, mathematician, and writer. As a mathematician, he is credited with being the creator of techniques for algebraic geometry. As a philosopher, he created views of the world that is still seen as fact today. Such as how the world is made of matter and some fundamental properties for matter. Descartes is also a co-creator of the law of refraction, which is used for rainbows. In his day, Descartes was an innovative mathematician who developed many theories and properties for math and science. He was a writer who had many works that explained his ideas. His most famous work was Meditations on First Philosophy. This book was mostly about his ideas about science, but he had books about mathematics too. Descartes’ Dream: The World According to Mathematics is a collection of essays talking about his views of algebra and geometry.
Carl Friedrich Gauss was born April 30, 1777 in Brunswick, Germany to a stern father and a loving mother. At a young age, his mother sensed how intelligent her son was and insisted on sending him to school to develop even though his dad displayed much resistance to the idea. The first test of Gauss’ brilliance was at age ten in his arithmetic class when the teacher asked the students to find the sum of all whole numbers 1 to 100. In his mind, Gauss was able to connect that 1+100=101, 2+99=101, and so on, deducing that all 50 pairs of numbers would equal 101. By this logic all Gauss had to do was multiply 50 by 101 and get his answer of 5,050. Gauss was bound to the mathematics field when at the age of 14, Gauss met the Duke of Brunswick. The duke was so astounded by Gauss’ photographic memory that he financially supported him through his studies at Caroline College and other universities afterwards. A major feat that Gauss had while he was enrolled college helped him decide that he wanted to focus on studying mathematics as opposed to languages. Besides his life of math, Gauss also had six children, three with Johanna Osthoff and three with his first deceased wife’s best fri...
Rene Descartes may have been most famous However, mathematics appealed to him the most for its innate truthfulness and application to other branches of knowledge. Later in his life, he developed both mathematical and philosophical concepts that are still used widely today. Overall, Rene Descartes should be considered one of the most influential mathematicians of all time for his work in analytic geometry, which set the foundation for algebraic, differential, discrete, and computational geometry, as well as his application of mathematics into philosophy.
Pascal programming language was designed in 1968, and published in 1970. It is a small and efficient language intended to encourage good programming practices using structured programming and data structuring. Pascal was developed by Niklaus Wirth. The language was named in honor of the French mathematician and philosopher Blaise Pascal. In 1641, Pascal created the first arithmetical machine. Some say it was the first computer. Wirth improved the instrument eight years later. In 1650, Pascal left geometry and physics, and started his focus towards religious studies. A generation of students used Pascal as an introduction language in undergraduate courses. Types of Pascal have also frequently been used for everything from research projects to PC games. Niklaus Wirth reports that a first attempt to merge it in Fortran in 1969 was unsuccessful because of Fortran's lack of complex data structures. The second attempt was developed in the Pascal language itself and was operational by mid-1970. A generation of students used Pascal as an introductory language in undergraduate courses. Pascal, in its original form, is a Procedural language and includes the traditional like control structures with reserved words such as IF, THEN, ELSE, WHILE, FOR, and so on. However, Pascal has many data structuring and other ideas which were not included in the original, like type definitions, records, pointers, enumerations, and sets. The earliest computers were programmed in machine code. This type of programming is time consuming and error prone, as well as very difficult to change and understand. Programming is a time-consuming a process. More advanced languages were developed to resolve this problem. High level languages include a set of instruction...
Ada Lovelace was the daughter of famous poet at the time, Lord George Gordon Byron, and mother Anne Isabelle Milbanke, known as “the princess of parallelograms,” a mathematician. A few weeks after Ada Lovelace was born, her parents split. Her father left England and never returned. Women received inferior education that that of a man, but Isabelle Milbanke was more than able to give her daughter a superior education where she focused more on mathematics and science (Bellis). When Ada was 17, she was introduced to Mary Somerville, a Scottish astronomer and mathematician who’s party she heard Charles Babbage’s idea of the Analytic Engine, a new calculating engine (Toole). Charles Babbage, known as the father of computer invented the different calculators. Babbage became a mentor to Ada and helped her study advance math along with Augustus de Morgan, who was a professor at the University of London (Ada Lovelace Biography Mathematician, Computer Programmer (1815–1852)). In 1842, Charles Babbage presented in a seminar in Turin, his new developments on a new engine. Menabrea, an Italian, wrote a summary article of Babbage’s developments and published the article i...
Burton, D. (2011). The History of Mathematics: An Introduction. (Seventh Ed.) New York, NY. McGraw-Hill Companies, Inc.
The history of the computer dates back all the way to the prehistoric times. The first step towards the development of the computer, the abacus, was developed in Babylonia in 500 B.C. and functioned as a simple counting tool. It was not until thousands of years later that the first calculator was produced. In 1623, the first mechanical calculator was invented by Wilhelm Schikard, the “Calculating Clock,” as it was often referred to as, “performed it’s operations by wheels, which worked similar to a car’s odometer” (Evolution, 1). Still, there had not yet been anything invented that could even be characterized as a computer. Finally, in 1625 the slide rule was created becoming “the first analog computer of the modern ages” (Evolution, 1). One of the biggest breakthroughs came from by Blaise Pascal in 1642, who invented a mechanical calculator whose main function was adding and subtracting numbers. Years later, Gottfried Leibnez improved Pascal’s model by allowing it to also perform such operations as multiplying, dividing, taking the square root.
The 17th Century saw Napier, Briggs and others greatly extend the power of mathematics as a calculator science with his discovery of logarithms. Cavalieri made progress towards the calculus with his infinitesimal methods and Descartes added the power of algebraic methods to geometry. Euclid, who lived around 300 BC in Alexandria, first stated his five postulates in his book The Elements that forms the base for all of his later Abu Abd-Allah ibn Musa al’Khwarizmi, was born abo...
The fist computer, known as the abacus, was made of wood and parallel wires on which beads were strung. Arithmetic operations were performed when the beads were moved along the wire according to “programming” rules that had to be memorized by the user (Soma, 14). The second earliest computer, invented by Blaise Pascal in 1694, was a “digital calculating machine.” Pascal designed this first known digital computer to help his father, who was a tax collector. Pascal’s computer could only add numbers, and they had to be entered by turning dials (Soma, 32). It required a manual process like its ancestor, the abacus. Automation was introduced in the early 1800’s by a mathematics professor named Charles Babbage. He created an automatic calculation machine that was steam powered and stored up to 1000 50-digit numbers. Unlike its two earliest ancestors, Babbage’s invention was able to perform various operations. It relied on cards with holes punched in them, which are called “punch cards.” These cards carried out the programming and storing operations for the machine. Unluckily, Babbage’s creation flopped due to the lack of mechanical precision and the lack of demand for the product (Soma, 46). The machine could not operate efficiently because technology was t adequate to make the machine operate efficiently Computer interest dwindled for many years, and it wasn’t until the mid-1800’s that people became interested in them once again.