Wait a second!
More handpicked essays just for you.
More handpicked essays just for you.
History of mathematicians
An essay on the history of mathematics
An essay on the history of mathematics
Don’t take our word for it - see why 10 million students trust us with their essay needs.
Recommended: History of mathematicians
The history of math has become an important study, from ancient to modern times it has been fundamental to advances in science, engineering, and philosophy. Mathematics started with counting. In Babylonia mathematics developed from 2000B.C. A place value notation system had evolved over a lengthy time with a number base of 60. Number problems were studied from at least 1700B.C. Systems of linear equations were studied in the context of solving number problems.
The basic of mathematics was inherited by the Greeks and independent by the Greeks beg the major Greek progress in mathematics was from 300 BC to 200 AD. After this time progress continued in Islamic countries Unlike the Babylonians, the Egyptians did not develop fully their understanding of mathematics. Instead, they concerned themselves with practical applications of mathematics. Mathematics flourished in particular in Iran, Syria and India from 450B.C. Major progress in mathematics in Europe began again at the beginning of the 16th Century.
The 17th Century saw Napier, Briggs and others greatly extend the power of mathematics as a calculator science with his discovery of logarithms. Cavalieri made progress towards the calculus with his infinitesimal methods and Descartes added the power of algebraic methods to geometry. Euclid, who lived around 300 BC in Alexandria, first stated his five postulates in his book The Elements that forms the base for all of his later Abu Abd-Allah ibn Musa al’Khwarizmi, was born abo...
Abstract: This paper gives an insight into the Mathematics used by the American Indians. The history of American Indians and how they incorporated mathematics into their lives is scarce. However from the information retrieved by Archeologists, we have an idea of the type of mathematics that was used by American Indians.
Geometry, a cornerstone in modern civilization, also had its beginnings in Ancient Greece. Euclid, a mathematician, formed many geometric proofs and theories [Document 5]. He also came to one of the most significant discoveries of math, Pi. This number showed the ratio between the diameter and circumference of a circle.
Greek mathematics began during the 6th century B.C.E. However, we do not know much about why people did mathematics during that time. There are no records of mathematicians’ thoughts about their work, their goals, or their methods (Hodgkin, 40). Regardless of the motivation for pursuing mathematical astronomy, we see some impressive mathematical books written by Hippocrates, Plato, Eudoxus, Euclid, Archimedes, Apollonius, Hipparchus, Heron and Ptolemy. I will argue that Ptolemy was the most integral part of the history of Greek astronomy.
Fundamentally, mathematics is an area of knowledge that provides the necessary order that is needed to explain the chaotic nature of the world. There is a controversy as to whether math is invented or discovered. The truth is that mathematics is both invented and discovered; mathematics enable mathematicians to formulate the intangible and even the abstract. For example, time and the number zero are inventions that allow us to believe that there is order to the chaos that surrounds us. In reality, t...
The mathematicians of Pythagoras's school (500 BC to 300 BC) were interested in numbers for their mystical and numerological properties. They understood the idea of primality and were interested in perfect and amicable numbers.
Even though Aristotle’s contributions to mathematics are significantly important and lay a strong foundation in the study and view of the science, it is imperative to mention that Aristotle, in actuality, “never devoted a treatise to philosophy of mathematics” [5]. As aforementioned, even his books never truly leaned toward a specific philosophy on mathematics, but rather a form or manner in which to attempt to understand mathematics through certain truths.
No other scholar has affected more fields of learning than Blaise Pascal. Born in 1623 in Clermont, France, he was born into a family of respected mathematicians. Being the childhood prodigy that he was, he came up with a theory at the age of three that was Euclid’s book on the sum of the interior of triangles. At the age of sixteen, he was brought by his father Etienne to discuss about math with the greatest minds at the time. He spent his life working with math but also came up with a plethora of new discoveries in the physical sciences, religion, computers, and in math. He died at the ripe age of thirty nine in 1662(). Blaise Pascal has contributed to the fields of mathematics, physical science and computers in countless ways.
The simplest forms of equations in algebra were actually discovered 2,200 years before Mohamed was born. Ahmes wrote the Rhind Papyrus that described the Egyptian mathematic system of division and multiplication. Pythagoras, Euclid, Archimedes, Erasasth, and other great mathematicians followed Ahmes (“Letters”). Although not very important to the development of algebra, Archimedes (212BC – 281BC), a Greek mathematician, worked on calculus equations and used geometric proofs to prove the theories of mathematics (“Archimedes”).
Ever wonder how scientists figure out how long it takes for the radiation from a nuclear weapon to decay? This dilemma can be solved by calculus, which helps determine the rate of decay of the radioactive material. Calculus can aid people in many everyday situations, such as deciding how much fencing is needed to encompass a designated area. Finding how gravity affects certain objects is how calculus aids people who study Physics. Mechanics find calculus useful to determine rates of flow of fluids in a car. Numerous developments in mathematics by Ancient Greeks to Europeans led to the discovery of integral calculus, which is still expanding. The first mathematicians came from Egypt, where they discovered the rule for the volume of a pyramid and approximation of the area of a circle. Later, Greeks made tremendous discoveries. Archimedes extended the method of inscribed and circumscribed figures by means of heuristic, which are rules that are specific to a given problem and can therefore help guide the search. These arguments involved parallel slices of figures and the laws of the lever, the idea of a surface as made up of lines. Finding areas and volumes of figures by using conic section (a circle, point, hyperbola, etc.) and weighing infinitely thin slices of figures, an idea used in integral calculus today was also a discovery of Archimedes. One of Archimedes's major crucial discoveries for integral calculus was a limit that allows the "slices" of a figure to be infinitely thin. Another Greek, Euclid, developed ideas supporting the theory of calculus, but the logic basis was not sustained since infinity and continuity weren't established yet (Boyer 47). His one mistake in finding a definite integral was that it is not found by the sums of an infinite number of points, lines, or surfaces but by the limit of an infinite sequence (Boyer 47). These early discoveries aided Newton and Leibniz in the development of calculus. In the 17th century, people from all over Europe made numerous mathematics discoveries in the integral calculus field. Johannes Kepler "anticipat(ed) results found… in the integral calculus" (Boyer 109) with his summations. For instance, in his Astronomia nova, he formed a summation similar to integral calculus dealing with sine and cosine. F. B. Cavalieri expanded on Johannes Kepler's work on measuring volumes. Also, he "investigate[d] areas under the curve" ("Calculus (mathematics)") with what he called "indivisible magnitudes.
Historically speaking, ancient inventors of Greek origin, mathematicians such as Archimedes of Syracuse, and Antiphon the Sophist, were the first to discover the basic elements that translated into what we now understand and have formed into the mathematical branch called calculus. Archimedes used infinite sequences of triangular areas to calculate the area of a parabolic segment, as an example of summation of an infinite series. He also used the Method of Exhaustion, invented by Antiphon, to approximate the area of a circle, as an example of early integration.
Melville, Duncan J, Tokens: the origin of mathematics, St Lawrence University IT Retrieved January 19th 2014, from St Lawrence University: http://it.stlawu.edu/~dmelvill/mesomath/tokens.html
Burton, D. (2011). The History of Mathematics: An Introduction. (Seventh Ed.) New York, NY. McGraw-Hill Companies, Inc.
In conclusion, it is clear that while their ancient civilization perished long ago, the contributions that the Egyptians made to mathematics have lived on. The Egyptians were practical in their approach to mathematics, and developed arithmetic and geometry in response to transactions they carried out in business and agriculture on a daily basis. Therefore, as a civilization that created hieroglyphs, the decimal system, and hieratic writing and numerals, the contributions of the Egyptians to the study of mathematics cannot and should not be overlooked.
The Nature of Mathematics Mathematics relies on both logic and creativity, and it is pursued both for a variety of practical purposes and for its basic interest. The essence of mathematics lies in its beauty and its intellectual challenge. This essay is divided into three sections, which are patterns and relationships, mathematics, science and technology and mathematical inquiry. Firstly, Mathematics is the science of patterns and relationships. As a theoretical order, mathematics explores the possible relationships among abstractions without concern for whether those abstractions have counterparts in the real world.
Euclid, also known as Euclid of Alexandria, lived from 323-283 BC. He was a famous Greek mathematician, often referred to as the ‘Father of Geometry”. The dates of his existence were so long ago that the date and place of Euclid’s birth and the date and circumstances of his death are unknown, and only is roughly estimated in proximity to figures mentioned in references around the world. Alexandria was a broad teacher that taught lessons across the world. He taught at Alexandria in Egypt. Euclid’s most well-known work is his treatise on geometry: The Elements. His Elements is one of the most influential works in the history of mathematics, serving as the source textbook for teaching mathematics on different grade levels. His geometry work was used especially from the time of publication until the late 19th and early 20th century Euclid reasoned the principles of what is now called Euclidean geometry, which came from a small set of axioms on the Elements. Euclid was also famous for writing books using the topic on perspective, conic sections, spherical geometry, number theory, and rigor.