Prime Numbers Prime numbers and their properties were first studied extensively by the ancient Greek mathematicians. The mathematicians of Pythagoras's school (500 BC to 300 BC) were interested in numbers for their mystical and numerological properties. They understood the idea of primality and were interested in perfect and amicable numbers. A perfect number is one whose proper divisors sum to the number itself. e.g. The number 6 has proper divisors 1, 2 and 3 and 1 + 2 + 3 = 6, 28 has divisors 1, 2, 4, 7 and 14 and 1 + 2 + 4 + 7 + 14 = 28. A pair of amicable numbers is a pair like 220 and 284 such that the proper divisors of one number sum to the other and vice versa. You can see more about these numbers in the History topics …show more content…
In Book IX of the Elements, Euclid proves that there are infinitely many prime numbers. This is one of the first proofs known which uses the method of contradiction to establish a result. Euclid also gives a proof of the Fundamental Theorem of Arithmetic: Every integer can be written as a product of primes in an essentially unique way. Euclid also showed that if the number 2n - 1 is prime then the number 2n-1(2n - 1) is a perfect number. The mathematician Euler (much later in 1747) was able to show that all even perfect numbers are of this form. It is not known to this day whether there are any odd perfect numbers. In about 200 BC the Greek Eratosthenes devised an algorithm for calculating primes called the Sieve of …show more content…
This states that if p is a prime then for any integer a we have ap = a modulo p. This proves one half of what has been called the Chinese hypothesis which dates from about 2000 years earlier, that an integer n is prime if and only if the number 2n - 2 is divisible by n. The other half of this is false, since, for example, 2341 - 2 is divisible by 341 even though 341 = 31 11 is composite. Fermat's Little Theorem is the basis for many other results in Number Theory and is the basis for methods of checking whether numbers are prime which are still in use on today's electronic computers. Fermat corresponded with other mathematicians of his day and in particular with the monk Marin Mersenne. In one of his letters to Mersenne he conjectured that the numbers 2n + 1 were always prime if n is a power of 2. He had verified this for n = 1, 2, 4, 8 and 16 and he knew that if n were not a power of 2, the result failed. Numbers of this form are called Fermat numbers and it was not until more than 100 years later that Euler showed that the next case 232 + 1 = 4294967297 is divisible by 641 and so is not
Geometry, a cornerstone in modern civilization, also had its beginnings in Ancient Greece. Euclid, a mathematician, formed many geometric proofs and theories [Document 5]. He also came to one of the most significant discoveries of math, Pi. This number showed the ratio between the diameter and circumference of a circle.
Hippocrates taught in Athens and worked on squaring the circle and also worked on duplicating the cube. He grew far in these areas and although his work is not lost, it must have contained much of what Euclid later included in Books One and Two of the Elements.
Eady, Pier. Britain's youngest parents: 12-year-old girl and boy aged 13 have baby daughter together http://www.mirror.co.uk/news/uk-news/britains-youngest-parents-12-year-old-girland boy aged 13 have baby daugh. N.p., 15 Apr. 2014. Web. 21 Apr. 2014. (Side note, Apr. 16, when this published is also my birthday) .
Through history, as said before, many philosophers have supported and developed what Pythagoras first exposed to the world. One of the most important philosophers to support Pythagoras’s ideas was Plato. In some of his writings he discusses the creation of the unive...
Burton, David. M. (2010). The History of Mathematics: An Introduction, Seventh Edition. New York, NY: McGraw-Hill.
Pierre de Fermat Pierre de Fermat was born in the year 1601 in Beaumont-de-Lomages, France. Mr. Fermat's education began in 1631. He was home schooled. Mr. Fermat was a single man through his life. Pierre de Fermat, like many mathematicians of the early 17th century, found solutions to the four major problems that created a form of math called calculus. Before Sir Isaac Newton was even born, Fermat found a method for finding the tangent to a curve. He tried different ways in math to improve the system. This was his occupation. Mr. Fermat was a good scholar, and amused himself by restoring the work of Apollonius on plane loci. Mr. Fermat published only a few papers in his lifetime and gave no systematic exposition of his methods. He had a habit of scribbling notes in the margins of books or in letters rather than publishing them. He was modest because he thought if he published his theorems the people would not believe them. He did not seem to have the intention to publish his papers. It is probable that he revised his notes as the occasion required. His published works represent the final form of his research, and therefore cannot be dated earlier than 1660. Mr. Pierre de Fermat discovered many things in his lifetime. Some things that he did include: -If p is a prime and a is a prime to p then ap-1-1 is divisible by p, that is, ap-1-1=0 (mod p). The proof of this, first given by Euler, was known quite well. A more general theorem is that a0-(n)-1=0 (mod n), where a is prime...
This source provided a lot of background information on Euclid and his discoveries. This source gave details about the many geometrical theories of Euclid, as well as his practical geometrical uses. This source also explained how geometry helped Greece a long time ago, and how it is used by many people everyday.
Pythagoras held that an accurate description of reality could only be expressed in mathematical formulae. “Pythagoras is the great-great-grandfather of the view that the totality of reality can be expressed in terms of mathematical laws” (Palmer 25). Based off of his discovery of a correspondence between harmonious sounds and mathematical ratios, Pythagoras deduced “the music of the spheres”. The music of the spheres was his belief that there was a mathematical harmony in the universe. This was based off of his serendipitous discovery of a correspondence between harmonious sounds and mathematical ratios. Pythagoras’ philosophical speculations follow two metaphysical ideals. First, the universe has an underlying mathematical structure. Secondly the force organizing the cosmos is harmony, not chaos or coincidence (Tubbs 2). The founder of a brotherhood of spiritual seekers Pythagoras was the mo...
Prime numbers have been of interest to mathematicians for centuries, and we owe much of our existing knowledge on the subject to thinkers who lived well before the Common Era––such as Euclid who demonstrated that there are infinitely many prime numbers around 300 BCE. Yet, for as long as primes have been an element of the mathematician’s lexicon, many questions about prime numbers remain unreso...
Pi was found by using a theoretically simple method. Pi represents the number 3.14... In turn, 3.14 represents the circumference of a circle. In order to find this number, Archimedes started with the obvious: draw a circle.
Euclid of Alexandria was born in about 325 BC. He is the most prominent mathematician of antiquity best known for his dissertation on mathematics. He was able to create “The Elements” which included the composition of many other famous mathematicians together. He began exploring math because he felt that he needed to compile certain things and fix certain postulates and theorems. His book included, many of Eudoxus’ theorems, he perfected many of Theaetetus's theorems also. Much of Euclid’s background is very vague and unknown. It is unreliable to say whether some things about him are true, there are two types of extra information stated that scientists do not know whether they are true or not. The first one is that given by Arabian authors who state that Euclid was the son of Naucrates and that he was born in Tyre. This is believed by historians of mathematics that this is entirely fictitious and was merely invented by the authors. The next type of information is that Euclid was born at Megara. But this is not the same Euclid that authors thought. In fact, there was a Euclid of Megara, who was a philosopher who lived approximately 100 years before Euclid of Alexandria.
By 1904 Ramanujan had begun to undertake deep research. He investigated the series (1/n) and calculated Euler's constant to 15 decimal places. He began to study the numbers, which is entirely his own independent discovery.
Burton, D. (2011). The History of Mathematics: An Introduction. (Seventh Ed.) New York, NY. McGraw-Hill Companies, Inc.
The history of math has become an important study, from ancient to modern times it has been fundamental to advances in science, engineering, and philosophy. Mathematics started with counting. In Babylonia mathematics developed from 2000B.C. A place value notation system had evolved over a lengthy time with a number base of 60. Number problems were studied from at least 1700B.C. Systems of linear equations were studied in the context of solving number problems.
The Fibonacci Series was discovered around 1200 A.D. Leonardo Fibonacci discovered the unusual properties of the numeric series, that’s how it was named. It is not proven that Fibonacci even noticed the connection between the Golden Ratio meaning and Phi.