Wait a second!
More handpicked essays just for you.
More handpicked essays just for you.
Chemical reactions lab
Chemical reactions lab
Chemistry lab practical
Don’t take our word for it - see why 10 million students trust us with their essay needs.
Recommended: Chemical reactions lab
The melting point of sodium chloride is 801 C. The result achieved got in the investigation was that sodium chloride did not melt within the time the substances were placed on the hot plate. The lab result was similar to the actual melting point, because 801 C is a pretty high melting point and hence the sodium chloride did not start melting, but it would have if it remained on the hot plate for a longer amount of time. The melting point of sucrose is 186 C. The result during the investigation was that the sucrose was the second substance to start melting after substance "unknown C". The real melting point of sucrose corresponds to the results that were observed. This is because compared to the melting point of sodium chloride, the melting point of sucrose is pretty low, and hence it started melting within minutes of it being kept on the hot plate. In a …show more content…
This can be determined because ionic bonds are able to conduct electricity if dissolved in water or if they are molten. This is because the ions in the water are able to carry electrical charges and this allows for electricity to pass through. On the other hand covalent bonds do not conduct electricity. When sodium chloride was tested with the ammeter, it showed a reading of 130 mA, which is pretty high compared to the other substances, and hence this shows that sodium chloride is probably an ionic bond. Sucrose achieved a reading of 0, which concludes that this most probably is a covalent bond, and further tests would confirm this conclusion. Sodium hydrogen carbonate was only able to conduct 20mA of electricity, but it is still a ionic bond, this is because covalent bonds are not able to conduct electricity at all. In a similar way to sucrose, glycerin also had a ammeter reading of 0 mA, and hence telling us that glycerin is a covalent
Solid A was identified to be sodium chloride, solid B was identified to be sucrose, and Solid C was identified to be corn starch. Within the Information Chart – Mystery White Solid Lab there are results that distinguishes itself from the other 4 experimental results within each test. Such as: the high conductivity and high melting point of sodium chloride, and the iodine reaction of corn starch. Solid A is an ionic compound due to its high melting point and high electrical conductivity (7), within the Information Chart – Mystery White Solid Lab there is only one ionic compound which is sodium chloride, with the test results of Solid A, it can be concluded that is a sodium chloride. Solid B was identified as sucrose due to its low electrical
Extraction is a separation method that is often used in the laboratory to separate one or more components from a mixture. Sucrose was separated at the beginning because it is the most immiscible and it’s strongly insoluble. Next Acetylsalicylic Acid was separated which left Acetanilide alone. Variety steps could have led to errors occurring. For example the step of separation, when dichloromethane layer was supposed to be drained out, it could be possible some aqueous layer was drained with it. Which could make the end result not as accurate. Also errors could have occurred if possibly some dichloromethane was not drained out. Both way could interfere with end result of figuring the amount of each component in the mixture. The solids percentage were 22.1% more than the original. That suggests that solids weren’t separated completely which clarifies the reason the melting points that were recorded were a slightly lower than the actual component’s melting point. The melting point for Acetylsalicylic Acid is 136 C but that range that was recorded during the experiment was around 105 C to 118 C. The melting points were slightly lower than the literature value. Sucrose was the purest among all component due to its higher melting point which follows the chemical rule that the higher the melting point the more pure the component
Mixed melting point was used to confirm the identity of the product. The smaller the range, the more pure the substance. When the two substances are mixed; the melting point should be the same melting range as the as the melting range obtained after filtering. If the mixed melting point is lower one taken from the crystals, then the two substances are different.
The first term that I noted during the movie was Conductive Polymers. Conductive polymers are almost always organic meaning a large class of chemical compounds whose molecules contain carbon. These polymers have extended delocalized bonds which are bonds found in a molecule that do not belong to a single atom or covalent bond. They are conjugated systems of double bonds and in a aromatic systems. The conjugated systems are atoms covalently bonded with alternating single and double bonds. When the electrons are removed or added into the valence bands the electrical conductivity increases. The conductive polymer has a low conductivity until the electron is removed from the valence band called (p-doping) or (n-doping) until it becomes more conductive. The movement of the charges is what is responsible for electrical conductivity. These polymers are plastic which are organic polymers and with mechanical properties such as flexibility and elasticity.
The bottom of the capillary tube and the thermometer were submerged in a beaker of heating water. The water was stirred occasionally and heated very quickly. However, when the water reached 80 ˚C it was heated very slowly in order to not pass the melting point. 3. The temperature when alum melted was recorded in the data table.
Also, looking at Table 1, the percent yield is shown to be 44.9%. The percent yield is how much product was recovered after the reaction was carried out. The percent yield can be used to explain why the melting point observed in the experiment didn’t match the known melting point. Obtained melting points are generally lower than the literature value melting points of a substance due to the number of impurities present in the obtained product. The percent yield of 44.9% validates that the product could have had some impurities present, and thus the lower melting point.
Different experiments with different strategies: Experiment 1: Investigating the rate of dissolving in various temperatures. Control Variable: 1. The solute is the same: sucrose;C12H22O6(sugar) 2. The solvent is the same: water; H2O 3. The mass of sugar is the same: 0.5 g 4.
Covalent and ionic are two forms of atomic bonds both of which differ in their structure and properties. Firstly, it should be made clear that an atom’s desire is to achieve stability. Most atoms by nature are not balanced electrically. They achieve balance by sharing or transferring their outermost energy level which contains electrons called valence electrons. The number of valence electrons in an atom mostly determines that atom’s or element’s properties.
In conclusion, this experiment allowed us, the students, to use theories learned in class to real life applications, or real life applications that we will soon encounter. The lab better prepared us for what may be expected in the future, and allowed us to determine different factors that affected our results in more than one possible way. The cold pack experiment lab that was conducted by my group and I, had resulted in us facing errors such as measurement errors, errors including the calorimeter and errors including our unknown salt. These errors were recorded and explained to better help us prevent it from occurring again. By following the correct procedure and having the correct materials required, we were able to determine the final enthalpy. That allowed us to determine what our unknown salt was, which was ammonium chloride.
Metals contain a sea of electrons (which are negatively charged) and which flow throughout the metal. This is what allows electric current to flow so well in all metals. An electrode is a component of an electric circuit that connects the wiring of the circuit to a gas or electrolyte. A compound that conducts in a solution is called an electrolyte. The electrically positive electrode is called the anode and the negative electrode the cathode.
Identifying Five Unknown Chemicals I was given 5 unknown samples, which are sodium chloride, sodium thiosulfate, calcium carbonate, sodium bicarbonate and sodium nitrate and these samples are all white and solid. However, I don’t know which substance is which sample and I was only given some information about the physical and chemical properties of these substances. In order to identify the 5 unknown samples, knowing which sample is which substance, I have to carry out this experiment, finding out the chemical and physical properties of these samples. How can we identify five unknown chemical samples that seem to look the same?
Methodology: A plastic cup was filled half way with crushed ice and mixed with four spoonfuls of 5 mL of sodium chloride. A thermometer was quickly placed inside the cup to take the temperature and the
The expected melting point of Semicarbazone of Cyclohexanone is 166°C.1 The assumed product is Semicarbazone of Cyclohexanone. Observed temperature being lower than the expected may indicate a contamination or an impurity. The low temperature result was shown to be more accurate than the room temperature result. Perhaps, in the room temperature, there was more of a mix in the products (i.e. containing both Semicarbazone of Cyclohexanone and Furaldehyde). This is reinforced by the pale yellow colour observed, when Semicarbazone of Cyclohexanone is supposed to be white. Room temperature result could be close to the eutectic point. This is kinetic control, as it is formed much quicker than the product of the high temperature reaction. To fix the problem of lower than expected melting point could be have a set temperature as to how cold the low temperature should be (e.g.
The objective of this experiment was to identify a metal based on its specific heat using calorimetry. The unknown metals specific heat was measured in two different settings, room temperature water and cold water. Using two different temperatures of water would prove that the specific heat remained constant. The heated metal was placed into the two different water temperatures during two separate trials, and then the measurements were recorded. Through the measurements taken and plugged into the equation, two specific heats were found. Taking the two specific heats and averaging them, it was then that
The simplest experiment for this type of situation would be to use red and blue litmus paper to distinguish between acids, bases and salts. Hydrochloric acid (HCl) makes blue litmus paper change color going from blue to red, making it an acid. Sodium hydroxide (NaOH) makes red litmus paper change color going from red to blue, making it a base. Sodium chloride solution (NaCl) is neutral, since it would only soak blue and red litmus paper, considering that it is a by product of when an acid and a base mix together, neutralizing each other.