Wait a second!
More handpicked essays just for you.
More handpicked essays just for you.
Simple distillation
Simple distillation
Introduction to simple distillation experiment
Don’t take our word for it - see why 10 million students trust us with their essay needs.
The objective of this experiment is to separate a liquid mixture of Ethyl Acetate and Toluene through the process of Fractional Distillation. It is also to determine the mixture composition and the physical properties of the two liquids. Fractional Distillation “is used to separate (purify) the different liquid components of a mixture.”1 This type of distillation differs from Simple Distillation in which the mixture being used “is composed largely of a single liquid component.”1 Both processes use the liquids boiling point for the purification. If a liquid is gathering and the temperature corresponds to the theoretical boiling point of the liquid, then that liquid is what is being collected. The theoretical plate is “Each section of the
The Separation Challenge is an experiment involving the use of background knowledge of mixtures, properties of matter, and creativity in order to find a solution to separate three different substances layered on top of each other within a container. The experiment required a matter of coming up with a solid and thought out procedure to successfully separate the three substances individually within an amount of time using various lab materials and technology accessible at the time.
For this experiment we have to use physical methods to separate the reaction mixture from the liquid. The physical methods that were used are filtration and evaporation. Filtration is the separation of a solid from a liquid by passing the liquid through a porous material, such as filter paper. Evaporation is when you place the residue and the damp filter paper into a drying oven to draw moisture from it by heating it and leaving only the dry solid portion behind (Lab Guide pg. 33.).
Because of the limited amount of time the student is provided during this lab experiment, the complete amount of distillate was not collected fully due to the procedure being very slow and time consuming. The final eugenol that was isolated was not completely pure, and this is proven by the percent recovery being 110%, which is clearly higher than a 100%. This means that other substances were isolated along with the eugenol oil, such as leftover dichloromethane, which was used in the first place because the water and eugenol did not successfully separate into two layers, thus dichloromethane was added to help separate them. This is was caused percent recovery to be higher than what it should be. Heating and boiling the final solution for a longer time until all the dichloromethane is evaporated completely can easily avoid the presence of
Once the mixture had been completely dissolved, the solution was transferred to a separatory funnel. The solution was then extracted twice using 5.0 mL of 1 M
The experimental Fischer esterification of 8.92g of acetic acid with 5.0g of isopentyl alcohol using concentrated sulfuric acid as a catalyst yielded 4.83g (65.3% yield) of isopentyl acetate. The product being isopentyl acetate was confirmed when the boiling point during distillation had similar characteristics to that of the literature boiling points2. Physical characteristics like color and smell also concluded a match of our product with what was intended. 1H-NMR spectroscopy analysis supported this claim due to the fact that the integration values and chemical shifts were comparable to isopentyl acetate. Lastly, infrared spectroscopy (IR) showed similar key characteristics of our product’s wavelengths to that of pure isopentyl acetate5.
The objective of this experiment was to perform extraction. This is a separation and purification technique, based on different solubility of compounds in immiscible solvent mixtures. Extraction is conducted by shaking the solution with the solvent, until two layers are formed. One layer can then be separated from the other. If the separation does not happen in one try, multiple attempts may be needed.
Based on our observations during the separation techniques and some speculation, we were able to identify eight components of our mixture: graphite from the filtration residue, Epsom salt from crystallization, water and acetic acid through distillation, red and orange dye, iron metal, marble chips, and sand.
Normally, emulsified water is generally present in crude oil as a result of the mixing occurring during production operations and referred to as oil field emulsion. This emulsion can be encountered at numerous stages include during drilling, producing, transporting and processing of crude oil. However, the formation of emulsion creates problems in oil field industry. They might increase the cost of production and also transportation; accumulate in the refinery tank age, pipeline corrosion, equipment failure, plugged pipeline. For economic and operational reasons, it is necessary to remove water completely from the crude oil emulsion before refining and transporting those. In order to separate the water content of the produced crude oils, the emulsions have to be broken through demulsification process.
You have been asked to design an oral liquid formulation of ibuprofen for paediatric use.
The performance curves based on the ethylene glycol solution will be compared to those developed using water as the base to examine the effect, if any, the viscosity and density of the liquid has on the pump.
For precise work, column temperature must be controlled to within tenths of a degree. The optimum column temperature is dependant upon the boiling point of the sample. As a rule of thumb, a temperature slightly above the average boiling point of the sample results in an elution time of 2 - 30 minutes. Minimal temperatures give good resolution, but increase elution times. If a sample has a wide boiling range, then temperature programming can be useful. The column temperature is increased (either continuously or in steps) as separation proceeds.
Toluene hydrodealkylation or hydrodealkylation of toluene (HDA) is a process that used to produce benzene. The reaction occurs as:
Preparation of Ethanol and Ethanoic Acid Introduction to report ---------------------- This report contains 5 practical experiments to produce ethanoic acid from ethanol. The first practical is the preparation of ethanol from glucose using yeast during the process of fermentation; this has been demonstrated in class. In this practical the glucose is converted into ethanol and carbon dioxide by respiratory enzymes from the yeast. The ethanol solution will be between 5-15% and the ethanol will be separated from the yeast by filtering.
The purpose of this experiment is to compare the processes of distillation and fractional distillation to discover which procedure enables a more pure sample of ethanol to be collected from an ethanol/water mixture.
There is a lot differences between Industrial applications and laboratory scale, the laboratory scale may often sometimes batch wise, while industrial distillation often occurs continuously.