Wait a second!
More handpicked essays just for you.
More handpicked essays just for you.
Lab. quiz chromatography
Process of photosynthesis 8th grade science
Process of photosynthesis 8th grade science
Don’t take our word for it - see why 10 million students trust us with their essay needs.
Recommended: Lab. quiz chromatography
In this experiment we are using a process called “chromatography” in order to accurately identify and separate the photosynthetic pigments from one another. A small sample of spinach solution is placed onto chromatography paper and made contact with a solvent. The result of solvent as it moves through the paper due to capillary action are observed and recorded. The results show that both the sample and the solvent move along the chromatography paper at the same rate. As the sample moves through the paper, the sample begins to separate itself into different pigments. Components of the mixture which contain a strong attraction to the paper with reside closer to the bottom of the chromatography paper. Where as the components which contain a weaker …show more content…
Photosynthesis is a very complex system in which light energy is broken down and converted into usable chemical energy for the plant. For example, light energy (usually from the sun), carbon dioxide (usually from the exhale of mammals), and water are used by a plant to make chlorophyll and help the plant grow. In return the plant releases oxygen and produces sugar. This process repeats itself over and over again.
Through the process of photosynthesis, a plant leaf is the part of the plant that sucks in the oxygen and carbon dioxide. When this happens, the leaf, then makes a substance called chlorophyll. Chloraphyll. Inside of the plant leaf, sunlight and water enters and a light reaction occurs. From there ATP is given off and the energy is moved to the Calvin cycle. In the Calvin cycle carbon enters in the form of Carbon Dioxide and leaves in the form of glucose. A plant can produce pigments which is defined as a chemical substance that reflect only certain light wavelengths and absorb certain other wavelengths of
…show more content…
A line was drawn approximently one centimeter from the triangle. This line represented the “start line” for the experiment. Using the mortar and pestle, a large piece of spinach and 5 ml of 90% isopropyl alcohol was grinded until a thick liquid was created. Chromatography solvent (90% Isopropyl Alcohol) was then placed into a Microcentrifuge tube and eight drops was transferd onto the line of the chromatography paper using the capillary tube. One Centimeter of the chromatography solvent was added to the chromatography jar and the chromatography paper was placed in the jar so the tip of the triangle dipped into the solvent. After 15 minuets the chromatography paper was observed and the results were recorded. When the solvent line reached approximately one centimeter from the top of the chromatography paper, the paper was removed and observations of the furthest point of the solvents progress was recorded before the line
Photosynthesis consists of the following equation: Sun light Carbon dioxide + Water = = == == ==> Glucose + Oxygen Chlorophyll Chlorophyll is a substance found in chloroplasts, found in the cells of leaves.
The Effect of Light on the Organic Plant Elodea Aim: To calculate the rate of photosynthesis from the number of oxygen bubbles produced by the plant. Photosynthesis: The process by which green plants use the sun's energy to build up carbohydrate reserves. Plants make their own organic food such as starch. Plants need Carbon dioxide, water, light and chlorophyll in order to make food; and starch and oxygen are produced. Carbon dioxide and water are the raw materials of photosynthesis.
Experiment #3: The purpose of this experiment to test the chromatography of plant pigments the alcohol test strip test will be used.
The high rate of absorbance change in blue light in the chloroplast samples (Figure 1) can be attributed to its short wavelength that provides a high potential energy. A high rate of absorbance change is also observed in red light in the chloroplast samples (Figure 1), which can be accredited to the reaction centre’s preference for a wavelength of 680nm and 700nm – both of which fall within the red light range (Halliwell, 1984). Green light showed low rates of photosynthetic activity and difference in change in absorbance at 605nm in the chloroplast samples (Figure 1) as it is only weakly absorbed by pigments, and is mostly reflected. The percentage of absorption of blue or red light by plant leaves is about 90%, in comparison to the 70–80% absorbance in green light (Terashima et al, 2009). Yet despite the high absorbance and photosynthetic activity of blue light, hypocotyl elongation was suppressed and biomass production was induced (Johkan et al, 2012), which is caused by the absorption of blue light by the accessory pigments that do not transfer the absorbed energy efficiently to the chlorophyll, instead direction some of the energy to other pathways. On the other hand, all of the red light is absorbed by chlorophyll and used efficiently, thus inducing hypocotyl elongation and the expansion in leaf area (Johkan et al, 2012).
There are a number of examples of works done before the twentieth century in which experiments were conducted. However, Michael Tswett used column liquid chromatography in which the stationary phase was a solid adsorbent packed in a glass column and the mobile phase was a liquid. He conducted experiments on extracts of chlorophyll in gasoline oil over 100 adsorbents. Most of these adsorbents are now no more important. Interestingly, the list of the inclusion of materials such as silica, alumina, carbon, calcium carbonate, magnesia and sucrose are still in use. He also confirmed the identity of the fractions obtained by the spectrophotometry at different wavelengths thus anticipating the most common mode for in liquid chromatography. In 1910 Tswett obtained his Doctrate degree and his doctoral research paper was published as a monogram which once again demonstrated his ideas for further development and improvement. That monogram marked the end of his chromatographic work. This is not surprising, because he was a botanist and chromatography is only a means and not an end. Chromatographic techniques had been ignored until 1930. One of the few exceptions was the work of an American L.S. Palmer, who in 1930 published his work for the description of the separation af plant and other dairy pigments. There are several reasons for the lack of interest in chromatography , for the moment, the main thing is that it
They absorb light energy and enable it to be converted into chemical energy which is used by the plants to make glucose and oxygen from carbon dioxide and water. Plants appear to be different colours because of the dominant pigments they contain. These pigments absorb some colours of light and reflect others, for example, the green chlorophylls absorb light from the blue-violet and the red regions of the visible spectrum and reflect green light. This is why plants which contain mostly chlorophylls appear green. Other pigments found in green plants, the yellow, orange and red carotenoids which absorb light only from the blue-violet region of the spectrum, are mostly masked by the more dominant chlorophyll.
Before learning about photosynthesis, I thought this was just a way for plants to grow, not knowing the full detail that goes on inside the plant for it to grow. So, after learning about what photosynthesis is and how it truly works, it is something that is remarkable and how plants are really the only living thing that uses this process. Photosynthesis is the process of taking in carbon dioxide (CO2), which is a gas that is exhaled from animals and goes into the air and is absorbed into a plant, water (H2O) which is absorbed through the roots of a plant or known as capillary action, sunlight is absorbed through chloroplasts which contain chlorophyll or better known as the leaves of the plant. With the photosynthesis process, the plant can create a by-product known as oxygen gas which is released through the little pores into the atmosphere (Simon, Dickey, Hogan & Reece, n.d.).
product and glucose levels. Plants trap the energy in sunlight using chlorophyll, a light trapping pigment found in leaf plant cells. It then uses carbon dioxide which enters the plant through small holes found. on the underside of the leaf called stoma and water which enters the
In this laboratory experiment, the rate of photosynthesis was measured through the use of the “floating leaf disk technique.” The leaf disks were placed into a syringe and the O2 and CO2 in the mesophyll layers of the leaves were removed and then replaced with sodium bicarbonate or water, causing the leaves to sink to the bottom of the container. If one determines the number of leaf disks rising to the top as a result of an increase in oxygen gas in the mesophyll cells, then the rate of photosynthesis is able to be measured because O2 is a product of photosynthesis. The first step of this experiment was a feasibility study of the variance in the photosynthetic activity of the leaf disks in both water and bicarbonate solutions. After five minutes of light exposure, all of the leaf disks in the bicarbonate solution (10 disks) had ...
“Photosynthesis (literally, “synthesis from light”) is a metabolic process by which the energy of sunlight is captured and used to convert carbon dioxide (CO2) and water (H2O) into carbohydrates (which is represented as a six-carbon sugar, C6H12O6) and oxygen gas (O2)” (BioPortal, n.d., p. 190).
An Experiment to Investigate the Effect of Light Intensity on the Rate of Photosynthesis. Introduction Photosynthetics take place in the chloroplasts of green plant cells. It can produce simple sugars using carbon dioxide and water causing the release of sugar and oxygen. The chemical equation of photosynthesis is: [ IMAGE ] 6CO 2 + 6H20 C 6 H12 O 6 + 6O2 It has been proven many times that plants need light to be able to photosynthesize, so you can say that without light the plant would neither photosynthesize nor survive.
Photosynthetic pigments are essential for life because they allow photosynthesis to occur by capturing sunlight which is then used alongside carbon dioxide and water to form organic compounds such as glucose and oxygen. The pigments allow the conversion of light energy to chemical energy which other organisms can benefit from. Oxygen is utilised by other organisms in aerobic respiration. The different pigments present in the chloroplasts allow a wide variety of wavelengths of light to be absorbed for efficient photosynthesis and provide colours to the plant to attract pollinators.
Photosynthesis is the process by which organisms that contain the pigment chlorophyll convert light energy into chemical energy which can be stored in the molecular bonds of organic molecules. Photosynthesis powers almost all trophic chains and food webs on the Earth. The net process of photosynthesis is described by the following equation: 6CO2 + 6H2O + Light Energy = C6H12O6 + 6O2. This equation simply means that carbon dioxide from the air and water combine in the presence of sunlight to form sugars, oxygen is released as a by-product of this reaction.
Photosynthesis is a process in which plants and other organisms convert the light energy from the sun or any other source into chemical energy that can be released to fuel an organism’s activities. During this reaction, carbon dioxide and water are converted into glucose and oxygen. This process takes place in leaf cells which contain chloroplasts and the reaction requires light energy from the sun, which is absorbed by a green substance called chlorophyll. The plants absorb the water through their roots from the earth and carbon dioxide through their leaves.
According to scientists, photosynthesis is “the process by which green plants and some other organisms use sunlight to synthesize foods from carbon dioxide and water. Photosynthesis in plants generally involves the green pigment chlorophyll and generates oxygen as a byproduct.” ("pho•to•syn•the•sis,")