Wait a second!
More handpicked essays just for you.
More handpicked essays just for you.
An essay on photosynthetic pigments
Don’t take our word for it - see why 10 million students trust us with their essay needs.
The Importance of Photosynthetic Pigments in Nature
Photosynthetic pigments are essential for life because they allow photosynthesis to occur by capturing sunlight which is then used alongside carbon dioxide and water to form organic compounds such as glucose and oxygen. The pigments allow the conversion of light energy to chemical energy which other organisms can benefit from. Oxygen is utilised by other organisms in aerobic respiration. The different pigments present in the chloroplasts allow a wide variety of wavelengths of light to be absorbed for efficient photosynthesis and provide colours to the plant to attract pollinators.
The photosynthetic pigments are important because they donate the electrons needed to start the sequence of reactions
…show more content…
The structure of chlorophyll involves a hydrophobic tail embedded in the thylakoid membrane which repels water and a porphyrin ring which is a ring of four pyrrols (C4H5N) surrounding a metal ion which absorbs the incoming light energy, in the case of chlorophyll the metal ion is magnesium (Mg2+.) The electrons within the porphyrin ring are delocalised so the molecule has the potential to easily and quickly lose and gain electrons making the structure of chlorophyll ideal for photosynthesis. Chlorophyll is the most abundant photosynthetic pigment, absorbing red and blue wavelengths and reflecting green wavelengths, meaning plants containing chlorophyll appear green. There are many types of chlorophyll, including chlorophyll a, b, c1, c2, d and f. Chlorophyll a is present in all photosynthetic organisms and is the most common pigment with the molecular formula C55H72MgN4O5. Chlorophyll b is found in plants with the molecular formula C55H70MgN4O6, it is less abundant than chlorophyll a. Chlorophyll a and b are often found together as they increase the wavelengths of light absorbed. Chlorophyll c1 (C35H30O5N4Mg) and c2 (C35H28O5N4Mg) are found in algae, they are accessory pigments and have a brown colour. Chlorophyll c is able to absorb yellow and green light (500-600nm) that chlorophyll a …show more content…
They are accessory pigment molecules that cascade light energy to primary pigments. Carotenoids absorb wavelengths in the blue and green region of the visible spectrum (400-550nm) and reflect wavelengths of 590-650nm so appear red-orange in colour. They are found in all plants and some photosynthetic bacteria. Carotenoids are separated into two groups, carotenes and xanthophylls. Carotenes (C40H56) are polyunsaturated hydrocarbons containing no oxygen and include pigments such as α-carotene, β-carotene, and lycopene. They give the orange colour to carrots and autumn leaves. Xanthophylls (C40H56O2) contain oxygen and include lutein and zeaxanthin. Carotenoids contain alternating carbon-carbon double bonds and single bonds, forming a conjugation system where electrons in the fourth outer shell are in p-orbitals which overlap. This overlapping produces a system of π-bonds with delocalised electrons. The delocalised electrons are free to move so are more easily lost because less energy is needed to raise them to an excited state. Shorter wavelengths towards the blue end of the spectrum with lower energies are absorbed because of the lower energy
700 0.03 0.01 0 0 0.028. 720 0.01 0.01 0 0 0.02 0. Figure 2: The absorption spectrum shows how absorbent the photosynthetic pigments are at different wavelengths of light. Note: Green light is between 500 to 570 nm and red light is between 630 to 720 nm.
... in the chloroplasts in some of their cells. Chlorophyll allows the energy in sunlight to drive chemical reactions. Chloroplasts act as energy transducers, converting light energy into chemical energy. So as the plant has more light the chlorophyll inside the chloroplasts can react faster absorbing in more light for food and energy.¡¨ So this shows my prediction was correct for in my experiment and shown in my result table and graph the more light intensity there is on a plant the higher the rate of my photosynthesis will be. My prediction is very close to what I said the results will be so my prediction was correct and has been proven to be correct in my result table, graph and now explained again in my conclusion.
This chemical is used to catch the light energy needed in photosynthesis. They take carbon dioxide from the air. Plants use sunlight to turn water and carbon dioxide into glucose. Plants use glucose as food for energy and as a building block for growing. The way plants turn water and carbon dioxide into sugar is called photosynthesis.
The high rate of absorbance change in blue light in the chloroplast samples (Figure 1) can be attributed to its short wavelength that provides a high potential energy. A high rate of absorbance change is also observed in red light in the chloroplast samples (Figure 1), which can be accredited to the reaction centre’s preference for a wavelength of 680nm and 700nm – both of which fall within the red light range (Halliwell, 1984). Green light showed low rates of photosynthetic activity and difference in change in absorbance at 605nm in the chloroplast samples (Figure 1) as it is only weakly absorbed by pigments, and is mostly reflected. The percentage of absorption of blue or red light by plant leaves is about 90%, in comparison to the 70–80% absorbance in green light (Terashima et al, 2009). Yet despite the high absorbance and photosynthetic activity of blue light, hypocotyl elongation was suppressed and biomass production was induced (Johkan et al, 2012), which is caused by the absorption of blue light by the accessory pigments that do not transfer the absorbed energy efficiently to the chlorophyll, instead direction some of the energy to other pathways. On the other hand, all of the red light is absorbed by chlorophyll and used efficiently, thus inducing hypocotyl elongation and the expansion in leaf area (Johkan et al, 2012).
Pigments produced by microorganisms has been used to dye fabrics of different types. Talaromyces verruculosus produce a red colored pigment which is suitable to dye cotton and is harmless. Pigments from microorganisms give different types of shades of a color. For instance; Janthinobacterium lividum produce a pigment which gives purplish-blue shade to different types of fabrics. Thermomyces produce a yellow pigment used to dye number of fabrics specifically silk. NP2 and NP$ strains of Streptomyces produce dark blue and red colored pigments. Among retaining dye of microbial strains cotton fabric were stained comparatively weak while acrylic and polyamide fibers stained strongly.
Albinism is a genetic condition present at birth, characterized by a small amount of melanin pigment in the skin, hair and eye. Albinism is an occasional inborn sickness related with vision difficult, which affect one in seventeen thousand persons. It is not a contagious disease and cannot be spread over contact. Albinism affects individuals from all races. Most folks with albinism have parents with a normal color of skin. Some may not even recognize that they are Albino until later on in their life. This paper will be based on the study of albinism, causes, types, the genetic transmission and some possible medical problem.
Photosynthesis and cellular respiration help sustain life on planet earth as both are metabolic processes in their own way. Photosynthesis is the process by which plants and other organisms use energy from the sun to form glucose from water and carbon dioxide. From there, glucose is then converted to ATP by way of cellular respiration. To convert nutrients that are biochemical energy into ATP, a process such as cellular respiration that has reactions needs to take shape in the cell of an organism, releasing waste products at the same time. For the continuous energy cycle that tolerates life on Earth as we know it Photosynthesis and Cellular respiration very essential. They have a few stages where energy and various connections occur within the eukaryotic cell. Cellular respiration takes place in the lysosome, an organelle that is found in the cytoplasm of eukaryotic cells. It uses enzymes to break down biomolecules including proteins, nucleic acids, carbohydrates, and lipids. Photosynthesis involves the chloroplasts, which contain pigments that absorb the sunlight and then transfigure them to sugars the plant can use. Those specific processes are crucial in how far and diversified evolution has
In my opinion albimisn is not good to have but at least most of the time it is not life threatening. Most of the eye problems can be helped just not cured. The only thing that is bad like I mentioned before is the possible bullying and all of the myths that make other people scared of them.
Plant and algae cells contain chloroplasts where photosynthesis takes place. The light reactions of photosynthesis drive the transformation of solar energy into ATP. The chloroplasts of plants contain pigment molecules (chlorophyll) which are responsible for capturing the light from the sun. This energy is referred to as excitation energy.
“Photosynthesis (literally, “synthesis from light”) is a metabolic process by which the energy of sunlight is captured and used to convert carbon dioxide (CO2) and water (H2O) into carbohydrates (which is represented as a six-carbon sugar, C6H12O6) and oxygen gas (O2)” (BioPortal, n.d., p. 190).
however it does not easily absorb green or yellow light, rather it. reflects it, this decreases the rate of photosynthesis. This can
Photosynthesis is a process in plants that converts light energy into chemical energy, which is stored in bonds of sugar. The process occurs in the chloroplasts, using chlorophyll. Photosynthesis takes place in green leaves. Glucose is made from the raw materials, carbon dioxide, water, light energy and oxygen is given off as a waste product. In these light-dependent reactions, energy is used to split electrons from suitable substances such as water, producing oxygen. In plants, sugars are produced by a later sequence of light-independent reactions called th...
Photosynthesis is a process in which plants and other organisms convert the light energy from the sun or any other source into chemical energy that can be released to fuel an organism’s activities. During this reaction, carbon dioxide and water are converted into glucose and oxygen. This process takes place in leaf cells which contain chloroplasts and the reaction requires light energy from the sun, which is absorbed by a green substance called chlorophyll. The plants absorb the water through their roots from the earth and carbon dioxide through their leaves.
Photosynthesis is a key contributor to all living things; photosynthesis provides the oxygen, food, and nutrients that help all living things stay healthy and alive. Photosynthesis converts solar energy into the chemical energy of a carbohydrate. Photosynthetic organisms, including land plants, algae, and cyanobacteria, which are called autotroph...
“Action spectrums describes the efficiency with which specific wavelengths produce a photochemical reaction. Photosynthesis involves the harvesting of light (absorption spectrum) and the subsequent photochemical and biochemical reactions. Meaning, an action spectrum describes the wavelengths that actually drive photosynthesis,” (heliospectra,2017). It can show the effect it has on photosynthesis if one of the wavelengths was to be taken away, it gives us not only a better understanding of how photosynthesis works but also the plant and how chlorophyll work and the different light spectrums that E. Nuttallii prefers for this reaction to