The process of photosynthesis is present in both prokaryotic and eukaryotic cells and is the process in which cells transform energy in the form of light from the sun into chemical energy in the form of organic compounds and gaseous oxygen (See Equation Below). In photosynthesis, water is oxidized to gaseous oxygen and carbon dioxide is reduced to glucose. Furthermore, photosynthesis is an anabolic process, or in other words is a metabolism that is associated with the construction of large molecules such as glucose. The process of photosynthesis occurs in two steps: light reactions and the Calvin cycle. The light reactions of photosynthesis take place in the thylakoid membrane and use the energy from the sun to produce ATP and NADPH2. The Calvin cycle takes place in the stroma of the chloroplast and consumes ATP and NADPH2 to reduce carbon dioxide to a sugar.
Light Energy + 6 H2O + 6 CO2 C6H12O6 + 6 O2
In this laboratory experiment, the rate of photosynthesis was measured through the use of the “floating leaf disk technique.” The leaf disks were placed into a syringe and the O2 and CO2 in the mesophyll layers of the leaves were removed and then replaced with sodium bicarbonate or water, causing the leaves to sink to the bottom of the container. If one determines the number of leaf disks rising to the top as a result of an increase in oxygen gas in the mesophyll cells, then the rate of photosynthesis is able to be measured because O2 is a product of photosynthesis. The first step of this experiment was a feasibility study of the variance in the photosynthetic activity of the leaf disks in both water and bicarbonate solutions. After five minutes of light exposure, all of the leaf disks in the bicarbonate solution (10 disks) had ...
... middle of paper ...
...d have led to inaccurate measurements because the leaves would not have been able to perform photosynthesis and rise to the surface. In addition, the air in the mesophyll layers of the leaves may not have been properly cleared by the syringe, which would have made it easier for the leaf disks to float to the surface because the leaf would have to perform a lower rate of photosynthesis. All of these errors may have been prevented by having a partner check over sections of the experiment to ensure accurate results and repeating the experiment numerous times to account for random error.
Moreover, a future experiment is to determine the effect that the distance between the lamp and the solution has on the rate of photosynthesis. Several experiments with a similar setup to this experiment that vary the distances between the lamp and solution could be used to test this.
Investigating the Effect of Light Intensity on Photosynthesis in a Pondweed Aim: To investigate how the rate of photosynthesis changes at different light intensities, with a pondweed. Prediction: I predict that the oxygen bubbles will decrease when the lamp is further away from the measuring cylinder, because light intensity is a factor of photosynthesis. The plant may stop photosynthesising when the pondweed is at the furthest distance from the lamp (8cm). Without light, the plant will stop the photosynthesising process, because, light is a limited factor. However once a particular light intensity is reached the rate of photosynthesis stays constant, even if the light intensity is the greatest.
I added ½ tablespoon of baking soda to 4 cups of water. I added a small drop of liquid soap to the water and stirred to mix. I used the end of a straw and cut out 20 circles of spinach leaves. I pulled the plunger completely out of the syringe and put the leaf circles into the syringe. Next I pushed the plunger back in. I used the syringe to suck up the baking soda water until the syringe was about ¼ full of liquid. I placed my finger over the end of the syringe and pulled back on the plunger as far as I could without pulling the plunger out. I repeated this step three times. All the leaf circles sunk to the bottom of the liquid. I placed the spinach into a clear glass with about 2 inches of baking soda solution. I blocked out all light. I set the lamp with a compact florescent light bulb. I placed the glass in front of the lamp. I counted the number of circles that floated after each minute for 20 minutes (positive control). I created a negative control by not placing compact florescent light bulb and not placing the glass in front of the lamp. I counted the number of circles that are floating. I repeated the experiment with fresh circles and used regular water plus soap for all steps instead of baking soda and soa...
The Effect of Light Intensity on the Rate of Oxygen Production in a Plant While Photosynthesis is Taking Place
= > [CH2O} + O2 + H2O, This shows that when the light intensity is increased the rate of reaction will be more quicker he only anomalous result there was, is the one in the 100 watt result the reading after 5 minutes is anomalous because it does not follow the predicted pattern of increasing in the production of gas because it is lower I know from my own knowledge of photosynthesise that when the light intensity is increased the rate of reaction will be more quicker because many plants and trees photosynthesise quicker in stronger light and photosynthesise slower in dimly lit places. The chlorophyll absorbs light energy and enables it to be used by the plant for building up sugar. The overall effect is that energy is transferred from sunlight to sugar molecules.
The experiment was conducted using carbon dioxide to see how it affected the rate of photosynthesis in spinach leaves. Carbon dioxide should increase the rate of photosynthesis because there will be more carbon dioxide, a reactant in the photosynthesis formula.
Overview of Cellular Respiration and Photosynthesis Written by Cheril Tague South University Online Cellular Respiration and Photosynthesis are both cellular processes in which organisms use energy. However, photosynthesis converts the light obtained from the sun and turns it into a chemical energy of sugar and oxygen. Cellular respiration is a biochemical process in which the energy is obtained from chemical bonds from food. They both seem the same since they are essential to life, but they are very different processes and not all living things use both to survive ("Difference Between Photosynthesis and Cellular Respiration", 2017). In this paper I will go over the different processes for photosynthesis and the processes for cellular respiration and how they are like each other and how they are essential to our everyday life.
The Effect of Light Intensity on Photosynthesis Of Elodea Canadensis Introduction I wanted to find out how much the light intensity affected the Photosynthesis in Elodea Camadensa. I decided to do this by measuring the amount of oxygen created during photosynthesis. Photosynthesis is the procedure all plants go through to make food. This process uses Carbon dioxide, water and light energy. It produces Oxygen and Glucose.
Photosynthesis and cellular respiration help sustain life on planet earth as both are metabolic processes in their own way. Photosynthesis is the process by which plants and other organisms use energy from the sun to form glucose from water and carbon dioxide. From there, glucose is then converted to ATP by way of cellular respiration. To convert nutrients that are biochemical energy into ATP, a process such as cellular respiration that has reactions needs to take shape in the cell of an organism, releasing waste products at the same time. For the continuous energy cycle that tolerates life on Earth as we know it Photosynthesis and Cellular respiration very essential. They have a few stages where energy and various connections occur within the eukaryotic cell. Cellular respiration takes place in the lysosome, an organelle that is found in the cytoplasm of eukaryotic cells. It uses enzymes to break down biomolecules including proteins, nucleic acids, carbohydrates, and lipids. Photosynthesis involves the chloroplasts, which contain pigments that absorb the sunlight and then transfigure them to sugars the plant can use. Those specific processes are crucial in how far and diversified evolution has
You continue you this until all the disks are floating. This shows photosynthesis because the bicarbonate solution acts as carbon dioxide, the water and the light causes the leaves to turn everything into oxygen which causes them to float to the top, essentially photosynthesis. The independent variables in the lab would be You could expand on this experiment by taking the cup after all of the leaves are floating and sitting it in the dark. When it gets dark the leaves should start falling back to the bottom, showing that without light photosynthesis is not possible. Without the light photosynthesis cannot take place so the leaves do not have the oxygen to float, so all the leaves sink to the bottom of the cup once again. Photosynthesis happens when water is absorbed by the roots of the plants and is carried to the leaves. Carbon dioxide is then taken from air that enters the leaves through the stomata and then travels to the cells that contain chlorophyll. Chlorophyll then converts the energy of the light into a form that can be stored and used when needed as food and energy for the plant. Photosynthesis gives us the oxygen we need to live. Plants then us the carbon dioxide we breathe out. With this we have mutualism with plants which means we benefit each other
An Experiment to Investigate the Effect of Light Intensity on the Rate of Photosynthesis. Introduction Photosynthetics take place in the chloroplasts of green plant cells. It can produce simple sugars using carbon dioxide and water causing the release of sugar and oxygen. The chemical equation of photosynthesis is: [ IMAGE ] 6CO 2 + 6H20 C 6 H12 O 6 + 6O2 It has been proven many times that plants need light to be able to photosynthesize, so you can say that without light the plant would neither photosynthesize nor survive.
C3 photosynthesis is the ancestral form of photosynthesis and is present in the majority of plant species (Sage, Sage & Kocacinar 2012). In this process CO2 enters the mesophyll cell (mc) via openings in the epidermis called stomata and diffuses into the into the chloroplast where it enters the Calvin cycle (Raven, Evert & Eichhorn 2013). The Calvin cycle is made up of three stages: 1. Carboxylation of Ribulose-1,5-bisphosphate (RuBP). In which a molecule of CO2 is covalently bonded to a molecule of RuBP forming the first stable intermediate 3-Phosphoglycerate. It is from this 3 carbon product that the name C3 photosynthesis comes from. This reaction catalysed by the enzyme Ribulose-1,5-bisphosphate carboxylase-oxygenase (Rubisco) 2. Reduction of 3-phosphoglycerate to the carbohydrate glyceraldehyde-3-phosphate, utilizing the ATP and NADPH formed in the light harvesting reactions. 3. Regeneration of the initial substrate RuBP (Taiz & Zeiger 2006). These stages encompass thirteen different reactions the net result of which is:
They are the same reactions, but occur in reverse. In photosynthesis, carbon dioxide and water yield glucose and oxygen respiration, process glucose and oxygen yield carbon dioxide and water, catabolic pathway process which requires or contains molecular oxygen for the production of adenosine triphosphate. This three step aerobic respiration cycle occurs in the cytoplasm and in the organelles called mitochondria. Within this process, cells break down oxygen and glucose in a storable form called adenosine triphosphate or ATP. This cellular respiration or sometimes called an exothermic reaction is similar to a combustion type reaction whereby the cell releases energy in the form heat but at a much slower rate within a living cell.
For my one research task project I have decided to see if light is necessary for photosynthesis to take place in green plants. I choose this topic because I wanted to see if light necessary for photosynthesis is really. It is also a very interesting topic because most living things need light to function, survive and grow. Photosynthesis is the physic-chemical process by which green plants use light energy to photosynthesis. When Photosynthesis occurs it takes in the co2 from the atmosphere and releases oxygen as a bi product. In addition the plants provide energy for humans.
The Importance of Photosynthesis and What it Does for Life According to scientists, life is “the condition that distinguishes animals and plants from inorganic matter, including the capacity for growth, reproduction, functional activity, and continual change preceding death, also the way of life of a human being or animal. ”("Life,”) In order for one to have life, one must have the nine characteristics to be considered a living thing. These nine characteristics are: all living things are made up of cells, living things are able to reproduce, living things use energy, maintain homeostasis, respond and adapt to the environment, grow and develop, have a life span, evolve over time, and are interdependent. All of the nine characteristics have one thing in common, something that is needed for all living things to work, even if they do not know it.
Photosynthesis is a cycle plants go through converting light into chemical energy for use later. Photosynthesis starts in the chloroplasts, they capture chlorophyll, an important chemical needed for photosynthesis. Chloroplasts also take water, carbon dioxide, oxygen and glucose. The chlorophyll is taken to the stroma, where carbon dioxide and water mix together to make