Physics Lab Report
Statement of the Problem:
The problem that was arisen in Problem #5: Motion up an Incline was in reference to a change in acceleration in both an uphill and downhill motion. The question on hand was whether or not the acceleration was the same going uphill as it was downhill or different from each other in both directions. To obtain a secure conclusion this experiment required the use of a frictionless cart, an inclined ramp, motion sensor, meter stick, and assistance of computer programs. These tools help us to achieve/correct our predictions by giving us precise information about the acceleration of the cart in both the up and downhill direction.
Prediction:
My prediction for Problem # 5 was how I felt that the acceleration of the cart would be equal but opposite to each other on the way up and down. As the cart is going uphill it would have a negative acceleration (see notebook for rough sketch of graph) because it’s slowing down and eventually going to return back to the bottom. As the cart is going down hill it is working with the acceleration making acceleration positive in a quantitative sense.
Data & Results:
The lab for Problem #5 was conducted in a pretty simple manner. Since are main goal was to see if acceleration were the same on the way up as it was down we just had to do a couple experimental runs by launching the cart up the hill, allowing it to reach its max distance up and then come back down. While doing the previ...
Upon completion of this task, the students will have photographs of different types of lines, the same lines reproduced on graph paper, the slope of the line, and the equation of the line. They will have at least one page of graphing paper for each line so they can make copies for their entire group and bind them together to use as a resource later in the unit.
In this experiment we positioned a marble ball on a wooden roller coaster positioned on a physics stand in the sixth hole. Throughout the experiment, we used an electronic timer to record the time of the marble where it passed through the light beam of its clamp. We positioned the clamp at a certain point on the roller coaster and measured the distance from the marble to the clamp; the height of the clamp; and finally the time the ball traveled through the clamp. After we recorded these different figures we calculated the speed of the marble from the given distance traveled and the time. We repeated the step 14 times, then proceeded to graph the speed and the height. Next, we took the measurements of position of the clamp, height, and speed and calculated the potential energy, the kinetic energy, and the total energy. Total energy calculated as mentioned before. Potential energy is taking the mass (m) which is 28.1g times gravity (g) which is 9.8 m/s2 times the height. Kinetic energy is one-half times the mass (m) times velocity (v2). Finally we graphed the calculated kinetic, potential, and total energies of this experiment.
the length of the slope can be used to calculate the speed of the car
Rolling a Car down a Ramp Investigation PLANNING When planning my experiment, I will need to take into consideration. the following points: -Fair testing -Equipment -How many results will I get? -What range of variables I will experiment with I will be investigating, by varying the height of the summit of the ramp. is raised off the ground, if the average speed increases or decreases.
When the eggs are dropped onto the pillow, the eggs will bounce a little and stay whole.
The independent variables in this experiment are the height of the ramp, the length of the ramp, the surface of the ramp, the weight of the marble, the size of the marble, and the surface of the marble. The dependent variable is the distance the ball rolls. The controlled variables are the starting position of the ball, the angle of the ramp, and the surface of the floor. Units: The height of the ball from the ground, the height of the ramp, and the distance the ball rolls will be measured in centimeters (cm).
The basic trolley problem is as follows. A trolley is moving down a track towards a fork in the track. On one side of the fork, there are five people tied up. On the other side of the fork, there is one person tied up. Without intervention, the trolley will go down the first side of the fork, killing five people, but there is a lever that can be pulled to divert the trolley down the second fork, killing only one
This experiment was conducted to calculate the running movement and velocity of four people running in a straight line for 100 meters and compare them to the all-star Usain bolt. Usain bolt is the number one all-star ranking, the best and fastest runner ever. The things I could have improved on were that I didn’t really contribute that much to the experiment due to me being sick and non-present for the experiment itself. Things that I did well on were getting down all the results onto the Microsoft excel. The conclusions made from this experiment were that Usain blot is still faster than everyone else and the boys are still faster than the girls by a large amount.
“Even though roller coasters propel you through the air, shoot you through tunnels, and zip you down and around many hills and loops, they are quite safe and can prove to be a great way to get scared, feel that sinking feeling in your stomach, and still come out of it wanting to do it all over again (1).” Thanks to the manipulation of gravitational and centripetal forces humans have created one of the most exhilarating attractions. Even though new roller coasters are created continuously in the hope to create breathtaking and terrifying thrills, the fundamental principles of physics remain the same. A roller coaster consists of connected cars that move on tracks due to gravity and momentum. Believe it or not, an engine is not required for most of the ride. The only power source needed is used to get to the top first hill in order to obtain a powerful launch. Physics plays a huge part in the function of roller coasters. Gravity, potential and kinetic energy, centripetal forces, conservation of energy, friction, and acceleration are some of the concepts included.
Math- Students will evaluate his or her journey and predict how long it will take to travel from one destination to another. This can be done in many formats at the teacher’s subjection.
In the experiment these materials were used in the following ways. A piece of Veneer wood was used as the surface to pull the object over. Placed on top of this was a rectangular wood block weighing 0.148-kg (1.45 N/ 9.80 m/s/s). A string was attached to the wood block and then a loop was made at the end of the string so a Newton scale could be attached to determine the force. The block was placed on the Veneer and drug for about 0.6 m at a constant speed to determine the force needed to pull the block at a constant speed. The force was read off of the Newton scale, this was difficult because the scale was in motion pulling the object. To increase the mass weights were placed on the top of the ...
6. What is the difference between a'smart' and a'smart'? The marble is triggered and rolls down a hot wheels ramp, down an incline plane with dowel rods guiding it in a zigzag motion, eventually being tunneled into a wheel and axle with a detached ramp. 7.
This experiment could have been more accurate if the angle of the slope could have been lowered to stop the trolley from accelerating. The experiment could have also been improved by taking greater care in making sure that the weights didn’t fall off of the trolley after they collided with the trolley. Better weights should have been found for the 1.5kg as the ones used had to be tied together to reach the sufficient weight, thus making them more likely to fall off the trolley. Conclusion: The hypothesis was proven correct for the 500g weight, however, the hypothesis was not proven correct for the 1kg and 1.5kg weights as the momentum before the collision did not equal to the momentum after the collision.
This would mean that at higher points the trolley would have more gravitational potential energy. This would be a good variable to investigate because we can use various gradients but it might be slightly difficult to measure some angles with the protractor. * Height of start position- this affects the motion of the trolley because as the height gets larger the trolley gains more gravitational energy. This would be a good variable to investigate because there are many heights we can use and it is also easy to
We did not have a specific place on the ramp at where we would drop the mass pieces onto the trolley. We just dropped them anywhere on the ramp. The position of the collisions was different for all three trials which might have affected the results because the distance after the collisions was different for every collision. There was no consistency.