Wait a second!
More handpicked essays just for you.
More handpicked essays just for you.
Plant tissue osmosis experiment
Investigating osmosis in plant cells method
Investigating osmosis in plant cells method
Don’t take our word for it - see why 10 million students trust us with their essay needs.
Recommended: Plant tissue osmosis experiment
Lab Report Testing the Effects of Changing Surcrose Concentration on Osmosis in Plant Cells Aim To investigate the effects of changing the sucrose concentration on osmosis in plant cells. Plan Water passes into cells through a special type of diffusion called osmosis. Water molecules diffuse through the membrane from a weak solution into a strong solution until the concentration is the same on both sides. A membrane that allows only certain molecules to pass through is called a semi-permeable membrane. In a plant, water passes from a weak cell sap solution to an adjoining cell with a stronger solution, as water passes in, the volume of the sap vacuole increases. When a full sap vacuole presses against the cell wall, it is said to be turgid. If water that is lost is not replaced the sap vacuole shrinks and pulls on the cell wall, the cell becomes flaccid; this is known as plasmolysis. In the cells shown below, water molecules will diffuse from the turgid cell into the flaccid cell, until the cells contain equal concentrations of cell sap. I intend to use potatoes for my investigation because these are sufficiently large, to enable all cores to be taken from the same potato, which will assist in ensuring a fair test. The concentration of sap in the sap vacuole of a potato cell is approximately 10% - 15%. I intend to place a predefined weight of potato cells (0.15g) in varying concentrations of sucrose solution (0%, 20%, 40%, 60%, 80%), to see the effects of osmosis in the cells of a potato in varying levels of sucrose solution. The potato cores will be prepared, weighed and then placed in the solution and left for a certain amount of time, they will then be removed, re-weighed and the difference in weights calc... ... middle of paper ... ...e the graph falls more steeply, flattening off at higher concentrations. I would also like to conduct an investigation, in conjunction with this experiment, to calculate the concentration of sap within the vacuole. To do this, I would find between which parameters the curve crosses the x-axis of sucrose concentration and retest at every 1% between these two parameters until I have found the concentration which contains a core that neither gains nor loses mass. This osmotic concentration would be the equivalent of the sap in the vacuole. As an extension to this investigation, I would run two experiments in parallel. All cores would be from the same potato, but one would run for an hour, as this one did and for the other the cores would be left in the solutions for longer, perhaps 24 hours, to establish if one hour is the end point of the osmotic diffusion.
Investigation of the Concentration and the Effect of Sucrose on Osmosis in Apple and Potato Tissues
Conclusion In my conclusion, the potatoes with the lowest concentration gained the most mass, and would become hard relating back to the Turgor theory I stated earlier. In contrast to this, the potatoes in the most concentrated solution lost the most weight thus becoming plasmolysed and limp also relating back to the background I have mentioned earlier. Evaluation In general the experiment was succesful the results were consistent and also were in accordance with the theories made at the start.. The experiment could have been improved by: · More subjects used instead of potatoes · More potatoes · Wider time ranger · Different molarities Using this variety of methods could have improved the experiemnt, however I was generally satisfied with the results of this osmosis experiement.
Osmosis in Potato Tubes Osmosis: Osmosis is the movement of water molecules through a semi-permeable membrane from a high concentration to a low concentration. Diagram: [IMAGE] [IMAGE] Aim: To see the effects of different concentration of sugar solution on Osmosis in potato tubes. Key factor: In the investigation we change the sugar solution from: 0%-10%-20%-30%-40%-50% this is the independent variable; the dependant variable is the change in mass. Prediction: I predict that all the potato tubes in pure water or low concentration sugar solution will swell because water enters their cells by osmosis.
Osmosis in Carrots Background Osmosis is the diffusion of water from a dilute solution to a more concentrated solution through a partially permeable membrane, which allows the pass of water molecules but not solute molecules. [IMAGE][IMAGE][IMAGE][IMAGE][IMAGE][IMAGE][IMAGE][IMAGE]If a cell is placed in a less concentrated solution water enters because the less concentrated solution will have a high concentration of water than the inside of the cell. Once the cell takes in maximum water the cell becomes turgid. If the cell was to be placed in a high concentrated solution, water would leave the cell because the cell would contain a low concentrated solution. So in the low concentrated solution there will be a high concentration of water and in the high concentrated solution there will be a low concentration of water.
The direction of osmosis depends on the relative concentration of the solutes on the two sides. In osmosis, water can travel in three different ways. If the molecules outside the cell are lower than the concentration in the cytosol, the solution is said to be hypotonic to the cytosol, in this process, water diffuses into the cell until equilibrium is established. If the molecules outside the cell are higher than the concentration in the cytosol, the solution is said to be hypertonic to the cytosol, in this process, water diffuses out of the cell until equilibrium exists. If the molecules outside and inside the cell are equal, the solution is said to be isotonic to the cytosol, in this process, water diffuses into and out of the cell at equal rates, causing no net movement of water. In osmosis the cell is selectively permeable, meaning that it only allows certain substances to be transferred into and out of the cell. In osmosis, the proteins only on the surface are called peripheral proteins, which form carbohydrate chains whose purpose is used like antennae for communication. Embedded in the peripheral proteins are integral
potato. To make it a fair test I will make sure that the tests will be
To investigate the osmotic effect of changing the concentration of sucrose solution; distilled water, 20% sucrose solution, 40% sucrose solution, 60% sucrose solution on the change in mass of potato cylinder after 30 minutes of being in solution.
Semi permeable membrane [IMAGE]Water molecules Salt molecules [IMAGE] Osmosis is the movement of water molecules across a semi permeable membrane from a region of high water concentration to a region of low water concentration. My prediction in this investigation is that the solution with the least salt will make the potato weigh more, thus the potato in the distilled water solution will weigh the heaviest, because there will be a higher concentration of water molecules in the distilled water than inside the potato cylinder. Therefore, water will move in from high concentration to low concentration this will increase the mass. I based my prediction on the process of osmosis, which is a special type of diffusion. It occurs across a permeable membrane, which allows some particles to diffuse through it and not others.
The materials needed are three small beakers (150 or 250 ml), a potato, a knife to cut the potato into pieces, a ruler to measure the potato, something to weigh the potato pieces, a timer, a calculator, and three solutions: distilled water, 10% sucrose, and 50% sucrose. The point of this experiment is to calculate the percent change in the mass before and after soaking the potato in the three different solutions. Create your own hypothesis before beginning the experiment. My hypothesis is that the potato soaked in water will have a higher mass after soaking, and that the potato soaked in the 10% sucrose and 50% sucrose will remain the same. Make sure to keep up with your measurements since they are needed to determine the mass percent change. The best way to accomplish this is to use the table provided at the end of this sheet to record your results. The first thing you need to cut the potato into three pieces of about two cubic centimeters (cm^3) in length. The second step you need to take is weighing each potato piece and writing down its mass. Next, label the three beakers with the three different solutions used. Then, you need to pour distilled water over one piece of potato, 10% sucrose on another, 50% sucrose on the last piece of potato; each solution needs to be poured on each potato piece until they are completely submerged. After they are submerged: set your timer for an
water in the potato, then the water will go out of the potato and into
Equipment Potato, Borer, Beakers, Measuring Cylinder, Stopclocks, Distilled Water, Electronic Balance, Salt solutions of various concentrations. Diagram [IMAGE] [IMAGE] [IMAGE] When we leave the potato in the solution for the allocated time, water
The Effect of Solute Concentration on the Rate of Osmosis Aim: To test and observe how the concentration gradient between a potato and water & sugar solution will affect the rate of osmosis. Introduction: Osmosis is defined as, diffusion, or net movement, of free water molecules from high to low concentration through a semi-permeable membrane. When a substance, such as sugar (which we will be using in the experiment we are about to analyse), dissolves in water, it attracts free water molecules to itself, and in doing so, stops them from moving freely. The effect of this, is that the concentration of (free) water molecules in that environment goes down. There are less free water molecules, and therefore less water molecules to pass across a semi-permeable membrane, through which sugar molecules and other molecules attached to them are too big to diffuse across with ease.
In my experiment, I will use an overall volume of 50 cm³ of 2moles of
The purpose of this experiment is to use our knowledge from previous experiments to determine the exact concentration of a 0.1M sodium hydroxide solution by titration (Lab Guide pg.141).
the length of time I kept the potato in the solution as I only kept