Wait a second!
More handpicked essays just for you.
More handpicked essays just for you.
Factors affecting reaction rate
Factors affecting reaction rate
Factors affecting reaction rate
Don’t take our word for it - see why 10 million students trust us with their essay needs.
Recommended: Factors affecting reaction rate
Investigating Rates of Reactions
My aim is to investigate what factors affect the rate of reaction
between magnesium and hydrochloric acid. The factor that I will be
focusing on is the concentration of Hydrochloric acid.
[IMAGE]Reaction Equation: Mg (s) +2HCl (aq) = MgCl2 (aq) +H2 (g)
Magnesium + Hydrochloric Acid = Magnesium Chloride + Hydrogen
There are several different variables you can such as temperature,
concentration; surface area and whether or not to use a catalyst or
not these all affect the rate of reaction.
*The effect of temperature on the rate of reaction is that, if the
temperature is increased then the particles will move faster. This
leads to more collisions. In addition, particles have more kinetic
energy, so more collisions will lead to a reaction.
*The effect of the surface area on the rate of reaction is, when one
of the reactants is a solid, the reaction must take place on the
surface of the solid. By breaking the solid into smaller pieces, the
surface area is increased, giving a greater area for collisions to
take place and so causing an increase in the rate of reaction.
*The effect of using a catalyst on the rate of reaction is that it
will speed up the rate of reaction. Using a catalyst lowers the
activation energy for the reaction. More collisions have sufficient
energy for reactions to take place. A catalyst that slows down a rate
of reaction is called an inhibitor.
*The effect of concentration on the rate of reaction is that, if the
concentration is increased, there are more particles within a given
volume, therefore more collisions occur and the reaction is faster.
The rate of reaction can also be defined, by using the collision
theory. A collision theory explains how chemical reactions take place
and why rates of reaction alter. For a reaction to occur the reactant,
particles must collide.
I am going to investigate how the concentration of hydrochloric acid
alters the rate of reaction. As I increase the amount of water, I
It is important however to note that the NH4 and K ions are still in
The Effect of Temperature of Hydrochloric Acid on the Rate of Reaction Between Hydrochloric Acid and Magnesium
Hydrochloric acid + calcium carbonate arrow calcium chloride + carbon dioxide + water. HCl(aq) + CaCO3(s) arrow CaCl2(aq) + CO2(g) + H2O(l) Things that affect the reaction rate of this experiment are: 1. The temperature of the hydrochloric acid. 2.
The number and strength of collisions is increased so that the reaction can happen faster than it should. If the particles have more energy then more particles will be able to react to it. Solid reactants like marble chips are affected by surface area. The larger the surface area, the more collisions that will take place.
The Effect of Concentration of Hydrochloric Acid on the Rate of Reaction with Magnesium Aim: To investigate the effect of concentration of hydrochloric acid on the rate of reaction with magnesium Prediction: As the concentration of the hydrochloric acid increases, so will the rate of reaction Hypothesis: In a reaction, particles of two different reactants react together to form a product. The reaction only takes place on account of two things, if the particles collide, and if the collision has enough 'activation energy'. The two reactant particles, in this case magnesium particles and hydrochloric acid particles, must collide with each other on the correct 'collision course'. If this does not occur then no chemical reaction will take place. The reaction must also have enough energy, this can be affected by temperature, the more heat the particles have the faster they move and so the more energy therefore more chance of successful collisions.
If a reactant is a solid, then breaking it up into smaller pieces (but keeping the mass the same) will increase its surface area. If there is a larger surface area the reacting particles will have more of an area to react with, therefore there will be more collisions. 4. A catalyst works by giving the reacting particles something to stick to where they can collide with each other, because they are all attracted to the catalyst there are going to be more collisions. A catalyst does not get used up in a reaction.
The reason I believe this is that chemical reactions occur when particles of the reacting substances collide. Increasing the number of the particles increases the number of collisions per second and this increases the reaction rate. In the reaction between hydrochloric acid and calcium carbonate you can increase the number of particles in two ways. The first of these is to increase the surface area of the calcium carbonate.
Chemical kinetics is a branch of chemistry that involves reaction rates and the steps that follow in. It tells you how fast a reaction can happen and the steps it takes to make complete the reaction (2). An application of chemical kinetics in everyday life is the mechanics of popcorn. The rate it pops depends on how much water is in a kernel. The more water it has the quicker the steam heats up and causes a reaction- the popping of the kernel (3). Catalysts, temperature, and concentration can cause variations in kinetics (4).
cloudy, to test this; I will place a piece of paper with a cross on
We have no gases and solids involved, therefore it is easy to deal with solutions. Similarly, the use of a catalyst complicates things, and if used incorrectly could alter the outcome of the experiment. The theory behind this experiment is that increasing the concentration can increase the rate of the reaction by increasing the rate of molecular collisions. GRAPH I will place the reaction mixture on a paper with a black cross drawn on it. When the cross is completely obscured, the reaction will be finished.
Investigating the Effects of Temperature on the Rate of Reaction between Magnesium and Hydrochloric Acid Introduction Chemical kinetics is the study and examination of chemical reactions regarding re-arrangement of atoms, reaction rates, effect of various variables, and more. Chemical reaction rates, are the rates of change in amounts or concentrations of either products or reactants. Concentration of solutions, surface area, catalysts, temperature and the nature of reactants are all factors that can influence the rate of reaction. Increasing the concentration of a solution allows the rate of reaction to increase because highly concentrated solutions have more molecules and as a result the molecules collide faster. Surface area also affects reaction rate because when the surface area of a reactant is increased, more particles are exposed to the other reactant.
Investigating How the Concentration of Hydrochloric Acid Affects the Rate of Reaction with Calcium Carbonate
One vital process in the human body observed in chemistry is the idea of chemical kinetics. Chemical kinetics is the study of the rate of reactions, or how fast reactions occur.1 Three factors that affect chemical kinetics are concentration, temperature, and catalysis. As the concentration of a substance increases, the rate of the reaction also increases.1 This relationship is valid because when more of a substance is added in a reaction, it increases the likelihood that the
The Effect of Temperature on The Rate Of Reaction Between Magnesium And Hydrochloric Acid Planning I'm planning on investigating how temperature effects the reaction between magnesium and hydrochloric acid, the experiment will show whether the reaction will speed up or slow down with the change in temperature. Temperatures will range from room temp up until 70 degrees. The investigation will be a fair test because all quantities will remain the same for each test, each test will use the same amounts of hydrochloric acid and same size of magnesium, also the concentration of the acid will also not be changed. APPERATUS; · Conical flask · Bunsen Burner · Thermometer · Tri-pod · Protective matt · Stopwatch · Gauze · Measuring jug · Goggles
The rate of reaction is how quickly or slowly reactants in chemical reactants turn into products. A low reaction rate is when the reaction takes a long time to take place; hence, a reaction that occurs quickly has a high reaction rate. A rate refers to how slow or quick the product is produced. It is possible to control the rate of chemical reactions and speed up or slow down the rate of chemical reactions by altering three main factors which are temperature, concentration and the surface area. When the temperature of the reactants increases, the molecules vibrate at a more intense speed therefore colliding with each other more frequently and with increased energy resulting in a greater rate of reaction. Accordingly, as the temperature decreases the molecules will move slower, colliding less frequently and with decreased energy resulting in the rate of reaction decreasing. Concentration is how much solute is dissolved into a solution and is also a factor that affects the rate of reaction. When the concentration is greater this means there is an increased amount of reactant atoms and molecules resulting in a higher chance that collisions between molecules will occur. A higher collision rate means a higher reaction rate. Consequently at lower concentrations there are reduced chances of the molecules colliding resulting in a lower reaction rate. The measurement of how much an area of a solid is exposed is called the surface area. The quicker a reaction will occur the more finely divided the solid is. For example, a powdered solid will usually have a greater rate of reaction in comparison to a solid lump that contains the same mass for it has a lower surface area than the powdered solid.