Wait a second!
More handpicked essays just for you.
More handpicked essays just for you.
Investigating the effect of temperature on enzyme activity results
Investigating the effect of temperature on enzyme activity results
Investigation of the effect of temperature changes on enzymes
Don’t take our word for it - see why 10 million students trust us with their essay needs.
Enzyme activity increases as temperature increases. Inversely, enzyme activity decreases as temperature decreases. At higher temperatures molecules move faster causing them to collide more. Therefore, enzymes collide with their substrates more at higher temperatures and the opposite at lower temperatures. When the temperature gets too hot, however, the enzyme will denature meaning its shape will be changed to the point where it can no longer bind with its substrate. This experiment will show the effects of temperature on enzyme activity of an amylose enzyme.
First three water baths should be set up. One bath should have ice to keep it at about 5° C. One bath should be kept at room temperature, approximately 37° C. The last bath should be boiled and kept at about 100° C. Amylase is an enzyme that hydrolyses starch to produce glucose. After the baths are established, the next step is to make a starch solution. Add 1 g of cornstarch to 10 mL of distilled water. Then dissolve the mixture in 50 mL of boiling water. Then collect 1 to 2 mL of saliva in a test tube, saliva contains amylose, and add 50 mL of water. Put 4 mL of the starch solution in each of three test tubes. Also, put 4 mL of the amylase in each of three different test tubes. Place one starch solution test tube in each of the
…show more content…
water baths for ten minutes. Do the same for the amylase solution test tubes. After ten minutes, pour the amylase solutions into the starch solution test tubes. Keep the test tubes in the water baths for ten more minutes. Place four drops of each mixture onto separate spot plates and add one drop of iodine to each sample. Iodine turns blue when it comes into contact with starch, but it stays yellow in the presence of glucose. The faster the iodine turns yellow, the faster the amylase works on the starch. The enzyme tested in this experiment is amylose, it breaks down starch.
The independent variable in this experiment is the temperature. The temperatures vary to test the effect of temperature on the rate of enzyme activity. The dependent variable in this experiment is the rate of enzyme activity. The rate of enzyme activity depends on the temperature. The control variables in this experiment are the starch solutions and the amylase solutions. The solutions are kept the same throughout the experiment and there are three of each to create a larger sample. The equipment used in this experiment include water baths, a hot plate, test tubes, and a thermometer. The only unit used in
this
To begin the study, I first calculated how much of each solution I would need. I knew that the final volume of my reaction solution needed to me 30ml, so I calculated how much of starch, amylase, and tris buffer I would need. I used the formula Concentration (initial stock solution) x Volume (initial stock solution)= Concentration (final solution) x Volume (final solution). Using this formula, I found that I would need an initial concentration of 21 ml of starch, 1 ml of amylase, and 8 ml of the tris buffer. After calculating the amounts of substances I would need, I created two different solutions, one with the Carb Cutter and one without. Carb Cutter claims to block starch, however, to find this I needed to test the absorbance level of the control to compare the effect Carb Cutter had on the solution. Below is a graph showing the concentration of the control reaction over one minute intervals through the
After conducting this experiment and collecting the data I would have to say that the optimal temperature for enzyme activity would have to be room temperature which in my experiment was thirty-four degrees Celsius. I came to this answer because the glucose test strip showed that at room temperature there was more glucose concentration that at either of the other temperatures. Due to temperature extremes in the boiling water the enzymes could no longer function because the breakdown of lactose stopped. The cold water also hindered the breakdown of the lactose but as the water warmed the enzymes were more active which can be seen in the results for the cold water at 20 minutes B. Describe the relationship between pH and the enzymatic activity of lactase.
For example, substrate concentration, enzyme concentration, and temperature could all be factors that affected the chemical reactions in our experiment. The concentration of substrate, in this case, would not have an affect on how the bovine liver catalase and the yeast would react. The reason why is because in both instances, the substrate (hydrogen peroxide) concentration was 1.5%. Therefore, the hydrogen peroxide would saturate the enzyme and produce the maximum rate of the chemical reaction. The other factor that could affect the rate of reaction is enzyme concentration. Evidently, higher concentrations of catalase in the bovine liver produced faster reactions, and the opposite occurs for lower concentrations of catalase. More enzymes in the catalase solution would collide with the hydrogen peroxide substrate. However, the yeast would react slower than the 400 U/mL solution, but faster than the 40 U/mL. Based on this evidence, I would conclude that the yeast has a higher enzyme concentration than 40 U/mL, but lower than 400
Input variables In this experiment there are two main factors that can affect the rate of the reaction. These key factors can change the rate of the reaction by either increasing it or decreasing it. These were considered and controlled so that they did not disrupt the success of the experiment. Temperature-
The Effect of Temperature on an Enzyme's Ability to Break Down Fat Aim: To investigate the effect of temperature on an enzyme’s (lipase) ability to break down fat. Hypothesis: The graph below shows the rate increasing as the enzymes get closer to their optimum temperature (around 35 degrees Celsius) from room temperature. The enzyme particles are moving quicker because the temperature increases so more collisions and reactions occur between the enzymes and the substrate molecules. After this the graph shows the rate decreasing as the enzymes are past their optimum temperature (higher than). They are getting exposed to temperatures that are too hot and so the proteins are being destroyed.
· I predict that the enzyme will work at its best at 37c because that
Jim Clark. (2007). The effect of changing conditions in enzyme catalysis. Retrieved on March 6, 2001, from http://www.chemguide.co.uk/organicprops/aminoacids/enzymes2.html
The independent variable for this experiment is the enzyme concentration, and the range chosen is from 1% to 5% with the measurements of 1, 2, 4, and 5%. The dependant variable to be measured is the absorbance of the absorbance of the solution within a colorimeter, Equipments: Iodine solution: used to test for present of starch - Amylase solution - 1% starch solution - 1 pipette - 3 syringes - 8 test tubes – Stop clock - Water bath at 37oc - Distilled water- colorimeter Method: = == ==
However, the decrease varied depending on the temperature. The lowest temperature, 4 degrees Celsius, experienced a very low decrease of amylose percentage. Temperature at 22 degrees Celsius and 37 degrees Celsius, both had a drastic decrease in amylose percentage. While the highest temperature, 70 degrees Celsius, experienced an increase of amylose percentage. In conclusion, as the temperature increases the percentage of amylose decreases; however, if the temperature gets too high the percentage of amylose will begin to increase. The percentage of amylose increases at high temperatures because there is less enzyme activity at high temperatures. However, when the temperature is lower, more enzyme activity will be present, which results in the decrease of amylose percentage. This is why there is a decrease of amylose percentage in 4, 22, and 37 degrees Celsius. In this experiment the optimal temperature is 37 degrees Celsius, this is because this is the average human body temperature. Therefore, amylase works better at temperatures it is familiar
Purpose: This lab gives the idea about the enzyme. We will do two different experiments. Enzyme is a protein that made of strings of amino acids and it is helping to produce chemical reactions in the quickest way. In the first experiment, we are testing water, sucrose solution, salt solution, and hydrogen peroxide to see which can increase the bubbles. So we can understand that enzyme producing chemical reactions in the speed. In the second experiment, we are using temperature of room, boiling water, refrigerator, and freezer to see what will effect the enzyme.
The Effect of Temperature on the Activity of the Enzyme Catalase Introduction: The catalase is added to hydrogen peroxide (H²0²), a vigorous reaction occurs and oxygen gas is evolved. This experiment investigates the effect of temperature on the rate at which the enzyme works by measuring the amount of oxygen evolved over a period of time. The experiment was carried out varying the temperature and recording the results. It was then repeated but we removed the catalase (potato) and added Lead Nitrate in its place, we again tested this experiment at two different temperatures and recorded the results. Once all the experiments were calculated, comparisons against two other groups were recorded.
Investigating the Effect of Enzyme Concentration on the Hydrolysis of Starch with Amylase Aim: Investigate the effect of enzyme concentration on the rate of an enzyme-controlled reaction. Using amylase and starch as my example. Introduction: I am investigating the effect of the concentration of the enzyme, amylase on the time taken for the enzyme to fully breakdown the substrate, starch to a sugar solution. The varied variable will be the concentration and all other variables are going to be fixed. The different concentrations will be: 0.5% 0.75% 1.0% 1.5% 2% An enzyme is a class of protein, which acts as a biological catalyst to speed up the rate of reaction with its substrates.
In this lab, it was determined how the rate of an enzyme-catalyzed reaction is affected by physical factors such as enzyme concentration, temperature, and substrate concentration affect. The question of what factors influence enzyme activity can be answered by the results of peroxidase activity and its relation to temperature and whether or not hydroxylamine causes a reaction change with enzyme activity. An enzyme is a protein produced by a living organism that serves as a biological catalyst. A catalyst is a substance that speeds up the rate of a chemical reaction and does so by lowering the activation energy of a reaction. With that energy reactants are brought together so that products can be formed.
The Effect of pH on Enzyme Activity. pH is a measure of the concentration of hydrogen ions in a solution. The higher the hydrogen ion concentration, the lower the pH. Most enzymes function efficiently over a narrow pH range. A change in pH above or below this range reduces the rate of enzyme reaction. considerably.
The pH of the solution would alter the rate of the reaction if it was