Abstract Crankshaft is a crucial component in an engine assembly. Crankshaft is consisting of two web sections and one crankpin, which converts the reciprocating displacement of the piston to a rotary motion with a four link mechanism. Generally crankshafts are manufactured using cast iron and forged steel material. In this work to design and finite element analysis of crankshaft of 4 cylinder petrol engine of Maruti swift Vxi. of 1200 cubic capacity. The finite element analysis in ABAQUS software by using six materials based on their composition viz. Cast iron, EN30B, SAE4340, Structural steel, C70 Alloy steel and Aluminium based composite material reinforced with silicon carbide & fly ash. The parameter like von misses stress, deformation;
It is resulted of 65.539 % of weight, with reduction in deformation.
Keywords: Crankshaft, ABAQUS, Optimization, Material Analysis.
Introduction
In Internal Combustion Engine Crankshaft play an important role to convert the reciprocating motion of piston in to rotational motion with the help of four link mechanism. Crankshaft is must be strong enough to take the downward force of the power stroked without excessive bending so mostly the life and reliability of engine is depend on the strength of crankshaft. In Internal Combustion engines, the transient load of maximum cylinder gas pressure is transmitted to crankshaft through the connecting rod, However Crankshaft convert reciprocating motion of the piston along with connecting rod to the
Metkar. [1] Their work is based on comparative studies of two methods of fatigue life assessment of a single cylinder diesel engine crankshaft. One is fracture mechanics approach by linear elastic fracture mechanics (LEFM) and other is recently developed critical distance approach (CDA). These methods shows crack growth, time required for failure and other parameters essential in life and reliability of crankshaft. Analysis is done in Ansys and nCode commercial software, Analysis result are also been used for predicting the fatigue life but are based on the stress and strain method, hence are not been used for comparative fatigue life
The Wankel rotary engine named after the designer, Felix Wankel, was engineered in the early 1930’s. The rotary engine was unlike the conventional four stroke internal combustion engines and lacked the need for pistons, valves and camshafts. With only three moving parts involved in the design, this engine showed great promise in reliability and efficiency. The first Wankel rotary model was shown in 1960, not as an engine, but as a pump drive. Instead of the very complicated system involved in a conventional reciprocating piston engine, the wankel engine incorporated triangular “rotors” (see figure 1) that rotate within an epitrochoidal chamber around an eccentric shaft. Not only is this engine much more simple (only 3 moving parts rather
The experiment test-bed is composed of a DC motor, an engine, a chain drive, a shaft and other accessorial components. The DC motor is used to drive the engine shaft and its speed can be up to 1450 r/min.
Comparing the joints welded with two different heat inputs, concluded that the ultimate tensile strength (UTS) and impact toughness of the welded joints decreases with increases the heat input.
The Physics Behind the Power of an Engine Insert the key, turn, and vroom. And down the road you go. Most people take for granted the strange conglomeration of metal and plastic under that sheet of metal, either in front or back of their vehicle. The engine, as you may have guessed, is a modern marvel- so to speak. They’re found in cars, trucks, boats, airplanes.
For over a century people have relied on automobiles, planes and trains as means of transportation, industry and agriculture, it has become such a successful necessity in the modern world that it has become a need for people to use them to get by. Now sure the three basic means of transportation are entirely different in the way the function and their use. All of these means of transportation would not be possible without this invention transportation could not be possible, The Internal Combustion Engine. You might be wondering what is exactly is an Internal Combustion Engine? It’s actually a simple concept but the way it’s performed can becoming very complex. The function of is to create a pulling force through a controlled explosion of compressed air and fuel inside a combustion chamber which then pulls a crank. Depending on what type of platform the engine is on will determine what the crank turns, for an example in a car the crank then turns either a front or rear axle which that axle transversely turns a wheel. In order for this engine to function in needs three elements - air, fuel and spark and without one of these elements the engine will not function, so it takes precise timing and careful planning by the Engineers to make the engine work as required.
explosion used to move the pistons up and down is greater however this pressure has to resist combustion in order to achieve
After Diesel’s death, the diesel engine underwent much development and became a very important replacement for the steam piston engine in many applications. Because the diesel engine required heavier, more robust construction than a gasoline engine, it was not widely used in aviation. The diesel engine became widespread in many other applications, however, such as a stationary engines, submarines, ships, and much later, locomotives, trucks, and in modern automobiles. Diesel engines are most often found in applications where a high torque requirements and low RPM requirements exist.
• fatigue normally associated with tensile stress , were reported crack fatigue loads due to pressure .
■ Amtek Siccardi is the group's joint-venture with Ateliers de Siccardi (France) and is engaged in the manufacture of machined crankshafts, steering knuckles and flywheel
This along with the lighter construction of a two-stroke makes it the preferred motor used in small vehicles and tools (Two Stroke Engine). A two-stroke engine is operated by first drawing the mixture of fuel and air into the chamber by the vacuum caused by the upward stroke of the piston. During the downward piston stroke, the poppet valve is forced closed due to the increased pressure within the chamber. The mixture is compressed in the chamber throughout the stroke. As the stroke ends, the intake port is exposed allowing the mixture to escape into the main cylinder, expelling the exhaust gasses in the process and some of the fuel mixture as well. Momentum then causes the piston to rise, compressing the mixture as another stroke is beginning. Once the stroke reaches its peak, the spark plug will ignite the mixture causing the fuel to expand driving the piston down thus completing the cycle while additionally initiating a new
The connecting rod or con rod connects the piston to the crank or crank shaft. Together with the crank, they form a simple mechanism that converts reciprocating motion into rotating motion. As a connecting rod is rigid, it may transmit either a push or a pull and so the rod may rotate the crank through both halves of a revolution, i.e. piston pushing and piston pulling. In modern automotive internal combustion engines, the connecting rods are most usually made of steel for production engines, but can be made of T6-2024 and T651-7075 aluminum alloys, or titanium. There are different types of materials and production methods used in the creation of connecting rods. The most common types of connecting rods are steel and aluminum. The most common type of manufacturing processes is casting, forging and powdered metallurgy. Connecting rods are subject to tension and compression loads. A connecting rod is an engine component that transfers motion from the piston to the crankshaft and functions as a lever arm. Connecting rods are commonly made from cast aluminum alloy and are
...aft for six feet stretched 2006 Hummer H2. I had to design the shaft for critical speed and its torsional strength by taking into consideration for minimal vibrations in operation at different engine speeds. I’m thankful to my Manager Mr. Ayaz Patel for believing in me and giving an opportunity to demonstrate my skills.
The entire compression of single reciprocating air compressor is carried out in the single cylinder. If one end of the piston and cylinder are affected during
Sirignano, W. A., & Liu, F. (1999). Performance increase for gas-turbine engine through combustion inside the turbine. Journal of Propulsion and Power, 15(1), 111-118.
Mechanical engineering is a type of engineering which applies principles of physics and material science for the purpose of analyzing, designing, manufacturing and maintaining of mechanical systems (Gorp, 2005). It is involved with the production and usage of mechanical power in the operation of various machines and tools. Mechanical engineering is considered to be the most diverse engineering and has its breadth derived from the need to design tools and manufacture products which range from small individual parts to large systems. Mechanical engineering, as thought of by scholars, is related to Aerospace engineering, Manufacturing and Mechanical engineering (Van et al, 2011).