Wait a second!
More handpicked essays just for you.
More handpicked essays just for you.
Lab report identification unknown bacteria e.coli
Lab report identification unknown bacteria e.coli
Effects of genetic modification on health
Don’t take our word for it - see why 10 million students trust us with their essay needs.
Recommended: Lab report identification unknown bacteria e.coli
Introduction
Background Information and Research: Inserting a gene from the Aequorea victoria jelly fish into the DNA of rabbits, pigs, and mice genetically modifies them to glow-in-the-dark. The production of specific genes are coded by genes. This particular type of jelly fish naturally glows in the dark because a gene coded for a green fluorescent protein (GFP). The goal of genetically modifying organisms is to have the modified organism produce a protein that has been coded by the inserted gene thus causing the modified organism to express the new trait. Genetically modifying organisms is important because it has had health benefits in the development of vaccines. E.coli is a rod-shaped bacteria that is a part of the Escherichia genus and is commonly found in the intestines. When demonstrating how to genetically modify an organism, E.coli bacteria is commonly used because it is a simple organism whose process for protein production, gene expression, is the same as a complex organisms’ process. In this experiment, a GFP was inserted into E.coli as well as a gene that causes E.coli’s resistance to ampicillin. Half of the agar plates that the bacteria was growing on had ampicillin. Ampicillin kills E.coli, so the successfully modified bacteria will have been grown on those ampicillin plates. Plasmids contain genes that are resistant to antibiotic ampicillin; scientists have used plasmids in the manipulation of genes. Plasmids were used because it is resistant to the ampicillin used, so if the bacteria was
…show more content…
Hypothesis: If a GFP gene is inserted into an E.coli cell, then the E.coli will glow in the dark.
If an antibiotic resistant gene is inserted into bacteria, the bacteria will be resistant to ampicillin.
Parts of the Experiment dependent variable – colony count of glow-in-the-dark bacteria on agar
Once the recombinant plasmid was obtained, it was then inserted into E. coli cells through transformation. From a successful transformation, we expected the bacterial cells to translate the inserted EGFP sequence into its protein form. The bacteria cultures were plated on petri dishes containing growth supplement, Luria Broth (LB), an antibiotic: Kanamycin, and IPTG which induced the fluorescence property within successfully transformed bacterial colonies. Different variants of the petri dishes were also included as control and unknown.
In this lab project, the microbiology students were given 2 unknown bacteria in a mixed broth each broth being numbered. The goal of this project is to determine the species of bacteria in the broth. They had to separate and isolate the bacteria from the mixed broth and ran numerous tests to identify the unknown bacteria. The significance of identifying an unknown bacteria is in a clinical setting. Determining the exact bacteria in order to prescribe the right treatment for the patient. This project is significant for a microbiology students because it gives necessary skills to them for future careers relating to clinical and research work.
...et light. If the LAA plate glows green under exposure to ultraviolet light, then we can conclude that our unknown insert piece of DNA would be the kan gene. If it does not glow green under exposure to ultraviolet light, then then we streak the colony from our LAA plate onto the LAC plate using a sterile glass spreader. When the LAC plate is dray, we place it upside down in the microfuge rack so that it can be incubated at 37 ºC. Incubation at 37 ºC will allow the transformed bacterial cells to grow. If we see bacterial growth on the LA plate containing chloramphenicol, we can conclude that our unknown insert piece of DNA would be the cat gene, since the cat gene is resistant to chloramphenicol. Afterwards, we then grab the microfuge tube labeled NP and repeat the aforementioned steps shown above pertaining to the LA plates. This would be considered our control.
ABSTRACT: Water samples from local ponds and lakes and snow runoff were collected and tested for coliform as well as Escherichia coli. Humans as well as animals come into contact with these areas, some are used for recreational activities such as swimming and some are a source of drinking water for both animals and humans The main goal of this experiment was to see which lakes, snow run off and ponds tested positive for coliform or Escherichia coli and to come up with some reasoning as to why. It was found that the more remote pond with less contact contained the most Escherichia coli. However, another lake that many swim in and use as their drinking water indeed tested positive for a small amount of Escherichia coli. The two samples from the snow showed negative results for both coliform and Escherichia coli and the two more public ponds that aren’t as commonly used as a source of human drinking water but animal drinking water tested in the higher range for coliforms but in the little to no Escherichia coli range. It was concluded that the remote pond should be avoided as it’s not a safe source of drinking water for humans or animals. Other than that, the the other ponds are likely to be safe from Escherichia coli, but coliforms are a risk factor.
The purpose of this laboratory is to learn about cultural, morphological, and biochemical characteristics that are used in identifying bacterial isolates. Besides identifying the unknown culture, students also gain an understanding of the process of identification and the techniques and theory behind the process. Experiments such as gram stain, negative stain, endospore and other important tests in identifying unknown bacteria are performed. Various chemical tests were done and the results were carefully determined to identify the unknown bacteria. First session of lab started of by the selection of an unknown bacterium then inoculations of 2 tryptic soy gar (TSA) slants, 1 nutrient broth (TSB), 1 nutrient gelatin deep, 1 motility
Escherichia coli (E. coli) is a member of the Enterobacteriaceae family of organisms. It is a non-spore forming, facultative anaerobic, gram negative rod capable of growing on a variety of media and, similar to other members of the Enterobacteriaceae family, contains the enterobacterial common antigen. Most E. coli are part of the normal flora of the human gastrointestinal tract, however some strains are pathogenic and capable of causing clinical disease. Epidemiologic classification of E. coli is based on the expression of certain surface antigens. The three of greatest importance are the somatic O polysaccharide (part of the lipopolysaccharide or Gram negative endotoxin), the K antigens (part of the capsule), and the H antigens (flagellin proteins). The bacteria regulate the expression of these antigens through antigenic phase variation. This process allows the organism to selectively express or not express the antigens, which aids in protection from antibody-mediated cell death. Enterohemorrhagic E. coli (EHEC) are strains that produce exotoxins (particularly verotoxins) that result in hemorrhage of the intestinal mucosa. There are several serotypes of EHEC; the most clinically significant is O157:H7.
Mold is a member of the fungi family. Since mold is part of the fungi family, it cannot use the sun to obtain energy. This means that mold has to use other plants or animals to grow. Even though they cannot see them, there are millions of mold spores in the air. These spores settle down and start to multiply which can be done rapidly or slowly as long as it has a food source. Mold usually grows best in warm environments, but it can still grow in cold environments also. Mold can cause illness such as vomiting or feeling nauseated when it is eaten or when it smells bad.
This biotechnology lab analyzes the effect of transferring genetic information through the alternation of bacterial gene in E. coli (Spilios, 2014). This alteration occurs through plasmid DNA transcribing the new genetic components into RNA, which will translate into an amino acid (Sadava et al., 2014). This newly transcribed amino acid is an enzyme that will give the transformed E. coli cells an antibiotic resistance, Beta-lactamase (Greenfield et al., 2009). The plasmid DNA of interest will be altered to become more resilient to the antibiotic ampicillin, since beta-lactamase could decompose the ampicillin. In addition to plasmid DNA, the bacteria contain other important features such as reporter gene. This reporter gene will act as an aid when observing the effect of the alteration, since this particular gene can be distinguished when a plasmid with foreign DNA is transferred from one to another (Spilios, 2014). Moreover, the reporter gene being used in this lab, Green Fluorescent Protein, is to determine gene resistance to ampicillin. GFP would be useful in this experiment, since it would glow when arabinose operon is present. Ampicillin is a derivative of penicillin that inhibits bacterial growth by interfering with the synthesis of bacterial cell walls. Since E. coli is gram negative, and ampicillin kills the gram-negative bacteria by synthesizing with the cell wall, E. coli should perish under no transformation. However, the ampicillin resistance gene is the enzyme Beta-lactamase, which is secreted by transformed cells into the surrounding medium where it destroys ampicillin (Dörr, 2010). In order to resist ampicillins, E.coli utilizes pGLO plasmid to protect the cell from ampicillin’s invasion. There are four components to...
In the “Transformation with Green Fluorescent Protein (GFP)” lab there were two samples of bacteria. One of which had been exposed to the GFP (+DNA) and one that was not (-DNA). The two DNA samples were subjected to a heat shock process. Both tubes incubate on ice for 10 minutes and are then are placed in a 42* C water bath for 90 seconds. Immediately after that transfer the tubes back to the ice for 2 minutes after that the tubes are put into a 37* C water bath. The heat shock process facilitates the entry of the plasmid into the bacteria. The plasmid carries the GFP and the antibiotic resistance genes. The samples were placed on one of four petri dishes labeled; -DNA, -DNA/AMP, +DNA/AMP, and +DNA/+AMP/+IPTG. AMP or ampicillin is an antibiotic
We possibly overlook the microorganisms when thinking of LMO since plants and animals probably will first come to our mind. With the development of recombinant DNA technology, metabolic potentials of microorganisms are being explored. Nowadays, genetically modified microorganisms (GMMs) have vast applications in human and animal health, bioremediation, and in industries such as food and textiles. The first GMM, specifically E. coli, was made in the 1970s (Teisha, 2013). A few years later, GMMs which produced essential human proteins were churned out by researchers (Teisha, 2013). Insulin, interferons (IFNs), and interleukins are among the famous proteins that are now produced by GMMs for therapeutic purpose. Human insulin was produced by genetically modified E. coli with exogenous human insulin genes inserted (Johnson, 1983). Besides, human growth hormone is also produced by modified E. coli containing the native human growth hormone genes (Cronin, 1997).
Antibiotic resistance is bacteria’s loss of susceptibility to the bactericidal or growth-inhibiting properties of an antibiotics. When a resistant strain of bacteria is the dominant strain in an infection, the infection may be untreatable and deadly he primary mechanisms of bacterial gene transfer are transduction and conjugation. Transduction occurs when a bacterial virus, called a bacteriophage, detaches from one bacterial cell, carrying with it some of that bacterium’s genome, and then infects another cell. When the bacteriophage inserts its genetic content into the genome of the next bacterium, the previous bacterium’s DNA also is incorporated into the genome. Conjugation occurs when two bacteria come into physical contact with each other and a plasmid, sometimes carry...
Antibiotics have been vital tools in the fight against bacterial infections, however their effectiveness has waned in recent times due to the advent of antibiotic resistant strains of bacteria. According to a review by P, the uses of antibiotics, as well as influences from the environment have allowed such bacterial strains to respond to changes in their environment rapidly, and so develop resistance. This acquired ability can have serious and broad implications in the medical field, evident in a study by O into the resistance of intestinal Staphylococcus aureus.
LAB REPORT 1st Experiment done in class Introduction: Agarose gel electrophoresis separates molecules by their size, shape, and charge. Biomolecules such as DNA, RNA and proteins, are some examples. Buffered samples such as glycerol and glucose are loaded into a gel. An electrical current is placed across the gel.
Antibiotic resistance can be caused by many things. The most common way in which bacterium build up a defence to antibiotics is by mutation. Mutation of a bacterium is when the DNA make up of the bacterium is altered, this in turn will change the shape of the antigen of a bacterium. Antibiotics will then not be able to inactivate the bacterium as they do not recognise it. One of the most common reasons as to why bacterium mutate is because many people do not finish their course of antibiotics. This is because they feel better so they stop taking the antibiotics, this means the bacterium only get exposed to the antibiotics enough to build up a resistance not enough to cause them to become inactive. Bacterium’s can also release special enzymes that are sent to attack the antibiotics. When doing this the enzymes will engulf the antibiotics which make the bacterium resistant to the treatment. Another way in which bacterium can build up a resistance is by changing how permeable the cell membrane is. In doing this the bacterium is limiting the amount of access points into it. By doing this the antibiotics will struggle to get into the bacterium, making it more resistant.
...c resistance in bacteria is a problem when the antibiotic is widely used to treat diseases. Resistance to antibiotics can occur if bacteria with a changed gene is less susceptible to an antibiotic, and that antibiotic is around, the less susceptible (and more resistant) version of the bacteria is more likely to survive the antibiotic and continue to multiply. This is particularly likely to happen if the amount of antibiotic around isn't quite enough to kill all of the bacteria quickly -- as can happen if enough of the antibiotic isn’t taken as prescribed to keep its level in the body high, or if taking the antibiotic is stopped prematurely. An antibiotic must be taken exactly as prescribed and for as long as it was prescribed. Some of the targeted bacteria may still linger and continue to cause the illness (Anderson, Rosaleen Groundwater, Paul Todd, Adam (2012)).