Wait a second!
More handpicked essays just for you.
More handpicked essays just for you.
Body effects of alcohol essay
Body effects of alcohol essay
Effects of alcohol on the human body essay
Don’t take our word for it - see why 10 million students trust us with their essay needs.
Recommended: Body effects of alcohol essay
The results supported our prediction, the Daphnia treated with alcohol had a decrease in the heart rate. Ethanol slows heart rate. The 10% ethanol was used in this experiment, the ethanol depresses the nervous system by acting as a non-selective neuro-depressant. The amounts of ethanol necessary to achieve this effect in humans would also be sufficient to depress the respiratory centers of the brain, rather like the effect of an overdose of general anesthetic, resulting in death (GCSE Science).
We compared the untreated Daphnias’ data with the data of Carolina Biological Company. It was observed that the temperature plays a major role in increasing the heartbeat of the Daphnia, for example, at 10 degree Celsius it had the lowest heart rate
The unknown bacterium that was handed out by the professor labeled “E19” was an irregular and raised shaped bacteria with a smooth texture and it had a white creamy color. The slant growth pattern was filiform and there was a turbid growth in the broth. After all the tests were complete and the results were compared the unknown bacterium was defined as Shigella sonnei. The results that narrowed it down the most were the gram stain, the lactose fermentation test, the citrate utilization test and the indole test. The results for each of the tests performed are listed in Table 1.1 below.
The Artemia franciscana can survive in extreme conditions of salinity, water depth, and temperature (Biology 108 laboratory manual, 2010), but do A. franciscana prefer these conditions or do they simply cope with their surroundings? This experiment explored the extent of the A. franciscanas preference towards three major stimuli: light, temperature, and acidity. A. franciscana are able to endure extreme temperature ranges from 6 ̊ C to 40 ̊ C, however since their optimal temperature for breeding is about room temperature it can be inferred that the A. franciscana will prefer this over other temperatures (Al Dhaheri and Drew, 2003). This is much the same in regards to acidity as Artemia franciscana, in general thrive in saline lakes, can survive pH ranges between 7 and 10 with 8 being ideal for cysts(eggs) to hatch (Al Dhaheri and Drew, 2003). Based on this fact alone the tested A. franciscana should show preference to higher pH levels. In nature A. franciscana feed by scraping food, such as algae, of rocks and can be classified as a bottom feeder; with this said, A. franciscana are usually located in shallow waters. In respect to the preference of light intensity, A. franciscana can be hypothesized to respond to light erratically (Fox, 2001; Al Dhaheri and Drew, 2003). Using these predictions, and the results of the experimentation on the A. franciscana and stimuli, we will be able to determine their preference towards light, temperature, and pH.
The isomerization procedure was done in order to create dimethyl fumarate from dimethyl maleate. Dimethyl maleate and dimethyl fumarate are cis and trans isomers, respectively. This procedure was done via a free radical mechanism using bromine. The analysis of carvones reaction was done in order to identify the smell and optical rotation of the carvone samples that were provided. The odor was determined by smelling the compound and the optical rotation was determined using a polarimeter.
Sordaria fimicola is a species of microscopic fungus that is an Ascomycete and are used to test for genetic variation in the lab setting (Sordaria fimicola: A Fungus used in Genetics, Volk). These organisms are what are called model organisms, or species that has been widely studied usually because it is easy to maintain and breed in a laboratory setting and has particular experimental advantages (Sordaria fimicola, Volk). S. fimicola, because it is in the Ascomycota phylum, have a distinguishing reproductive structure called the ascus, which is surrounded by the perithecium. This cylindrical sac-like structure houses 8 haploid spores; created through meiosis to produce 4 haploid spores and then mitosis to make 8 (Lab Manual, pg. 59-68). Based on the genotype they will vary in order and color. There are 3 different ratios that can arise from the 8 ascospores: 4:4, 2:2:2:2, and 2:4:2 (black/wild type and tan coloration). The 4:4 ratio suggests that no crossing over had occurred because there is no difference in order of the color parents that were mated. The two other ratios suggest genetic recombination, or crossing over, because of the
Planarians are free-living, carnivorous flatworms found in the Phylum Platyhelminthes, Class Turbellaria. Although the Phylum Platyhelminthes is known for having the animals with the most parasitic species, the class Turbellaria which consist of the Planaria, are a non-parasitic species. Platyhelminthes which translates to "flat worm" are triploblastic animals. This means that they have three tissue layers, the endoderm, mesoderm, and ectoderm. Planaria also are monoecious organisms, meaning that they have both female and male sex organs in one organism. Another characteristic of the Planaria is that they do not have a true body cavity, meaning that they are acoelomate organisms.
The Daphnia magna species in this experiment were kept and preserved in jars of suitable water that acted as small ponds. Each Daphnia Magna was transported individually using a wide-mouthed pipette to a depression slide. The stability of the Daphnia Magna on the slide was attained by using a drop of pond water that acted as a boundary of movement for the Daphnia on the depression slide, small pieces of cotton wool were also used to act as an extra boundary to stop the Daphnia Magna from swimming in circles in the pond drop it was placed in; the stability factor was important in counting the heart beat rate more accurately. The depression slide was then placed under the stereomicroscope, over a cooling chamber that was used to slow down the
The experiment studies the effects of Red Bull and its major components on the heart rate of a Daphnia. The experiment focuses on the effects of conditions on the cardiovascular system. The Cardiovascular system is responsible for the transport of blood, oxygen, nutrients and waste circulating the body. It consists of the heart, vessels, and blood as in closed circulatory system and hemolymph in open circulatory system, the cardiovascular system is also responsible for thermoregulation in the body. (Gonzalez, 2012). The heart helps pump blood to the lungs and rest of the body. The pumping of heart or the contraction and relaxation of heart determines the heart rate and depends on multiple chemicals that we could influence by using stimulants, depressants, varying temperatures, aerobic, and anaerobic
The purpose of this study is to determine the effect of varying concentration of alcohol, caffeine and nicotine on the heart rate of a daphnia magna and confirm any similarities between the affect of the chemical compound on the heart rate of daphnia magna and human beings.
To begin the lab, the variable treatment was prepared as the Loggerlite probe, used to later measure oxygen consumption, warmed up for approximately 10 minutes. To prepare the variable treatment, 200ml of Sodium and Ammo-lock water was measured in a container and a pre-prepared “tea bag” of tobacco was steeped in the room temperature treated water until a light yellow color was visible. After preparing the tobacco solution the preparation for the live goldfish began as two beakers were filled with 100 ml of treated water. Each beaker was weighed before addi...
Investigating the Effect of Alcohol on Heartbeat of Daphnia Daphnia are the organisms that are involved in this experiment to find out what effect alcohol has on their heartbeat. It is easy to study the effects of alcohol on the heart of Daphnia as the organ can be easily seen through the transparent body of Daphnia. The number of heartbeats may be counted before submersion in alcohol and after submersion in alcohol to investigate the effect of alcohol. Daphnia belong to the Phylum Arthropoda and are Branchiopoda which belong to the class, Crustacea. Daphnia are invertebrates and also have an exoskeleton, jointed appendages, a dorsal heart and open blood system.
The purpose of this lab was to study the response of the genus Daphnia to chemical stimuli and to examine human responses to different stimuli. A stimulus is an incentive; it is the cause of a physical response. Stimuli can have a physical or chemical change; an example of a physical change is a change in temperature and sound. An example of chemical change would be changes in hormone levels and pH levels. Muscular activity or glandular secretions are responses that occurs when stimulus information effects the nervous and/or hormone system. Daphnia is a genus; it is a small crustacean that lives in fresh water. The body of the daphnia is visible and its internal organs are clearly seen thus it was chosen for this exercise. The
Methionine represents the first limiting amino acid in broiler nutrition, thus different sources are available to balance diets based of corn and soybean. Bioavailability is different for each methionine source because of its rate of absorption and metabolic pathways. A broiler experiment was conducted to determine the relative bioavailability of Hydroxyl Methyl Analog Calcium (HMA-Ca) relative to DL-Methionine(DL-Met). The experiment was conducted at at Lavinesp (Unesp, Jaboticabal). It was used 1890 male broiler Cobb 500 of 21 days old, they were weighted and distributed homogeneously in a complete randomized design with 13 treatments and 7 replicates each. All birds fed either a basal diet deficient in sulphur amino acids, digestible methionine and cysteine (dig Met+Cys), or the basal diet with four levels of HMA-Ca (0.063, 0.183, 0.302 and 0.540%) and DL-Met (0.054, 0.156, 0.259 and 0.463%) to achieve increasing levels of dig Met+Cys. For the analysis, 5% of significance was considered and procedures of non-linear model were used by SAS. Exponential regression determinates bioavailability of HMA-Ca relative to DL-Met by calculating the relation of the slope of HMA-Ca relative to DL-Met
Ethanol is a central nervous system (CNS) depressant. It is the principal psychoactive constituent in alcoholic beverages making it the most commonly available drug in society. Ethanol can cause alcohol intoxication when consumed in high amounts. Once consumed, ethanol diffuses rapidly from the digestive tract into the bloodstream. As ethanol is a small, uncharged molecule it can easily cross the blood-brain barrier (Chandra 2008). Ethanol affects neuronal activity by altering the function of specific proteins, and inhibiting neurotransmission. Ethanol primarily exerts its effects by potentiating the action of endogenous neurotransmitters at the inhibitory receptor GABAA, or via inhibiting the excitatory effects of glutamate on the NMDA receptor (Harris et. al. 2008).
When alcohol is consumed, an enzyme called alcohol dehydrogenase metabolizes the alcohol to acetaldehyde at a rate of one standard drink per hour (Schuckit, 2009). After repeat exposures, tolerance may develop as a result of adaptational changes in the cells of the central nervous system (Merck, 1999). The increased tolerance may cause the patient to consume alcohol in greater quantities than before to achieve the same intoxicating effects. Alcoholics suffer dramatic long-term health damage. The most common forms of specific organ damage in alcoholics are cirrhosis, peripheral neuropathy, brain damage, a...
Ethanol can affect the regulation of the different electrolytes, hormones and the concentration of substances that need to be either reabsorbed or secreted. Alcohol can also cause changes in the anatomy of the kidneys and change the conformation of the different tubules in the nephron. Furthermore, the control of blood acidity and the regulation of other fundamental substances are affected and, together with the other factors listed above, they will be discussed in this essay. The kidneys are a bean-shaped organ in the human body and they have different functions and are of vital importance to it. The kidneys are the pair of organs, which are able to regulate the reabsorption of ions such as potassium, sodium and calcium, which are fundamental substances for the cell.