Materials and Methods This experiment was carried out in two parts. First, four small scale aldol condensation reactions (Table 1) were conducted by reacting cyclohexanone or acetophenone with benzaldehyde or p-fluorobenzaldehyde respectively. One equivlanet (0.1 Mmol) of a ketone and aldehyde were added to 1 mL of 10% sodium hydroxide in a 10mL round bottom flask. The reactions were stirred with a magnetic stir bar and allowed to react at room temperature for 1 hour. After 1 hour, thin layer chromatography (TLC) was conducted to determine if the reaction was complete and predict which ketone and aldehyde combination yielded a desired product. The TLC was conducted by diluting the reactants and products in Hexanes and using a mobile phase of 10% ethyl acetate. The most successful reaction was then selected to be scaled up. …show more content…
As such, 3 Mmol of cyclohexanone and p-fluorbenzaldehyde were each added to a 100 mL round bottom flask with 30 mL of 10% sodium hydroxide. The reaction was stirred with a magnetic stir rod and allowed to react at room temperature for 1 hour. To determine reaction progress, TLC (figure 3) was performed at 30 minutes, 45 minutes and 60 minutes post reaction start time. After the 60 minute TLC was performed, the reaction was determined to be complete. The product was then separated through a liquid-liquid extraction process. To separate the product, 10 mL of hexanes were added to the reaction and the solution was transferred to a separatory funnel. Then, 10 mL of distilled water were added to the funnel which was then shook vigorously and allowed to settle. The water layer was then drained from the vial and this process was repeated in triplicate. The resulting hexane layer was determined to contain the product of the reaction and was transferred to a 50 mL
The goal of this experiment is to determine which products are formed from elimination reactions that occur in the dehydration of an alcohol under acidic and basic conditions. The process utilized is the acid-catalyzed dehydration of a secondary and primary alcohol, 1-butanol and 2-butanol, and the base-induced dehydrobromination of a secondary and primary bromide, 1-bromobutane and 2-bromobutane. The different products formed form each of these reactions will be analyzed using gas chromatography, which helps understand stereochemistry and regioselectivity of each product formed.
The sole purpose of performing the lab was to utilize aldol condensation reactions to synthesize a cyclopenta-dienone, while using UV spectrophotometry and computer visualization to further understand the dienone. In the beginning of the lab, the tetraphenylcyclopentadienone (TPCP) was synthesized using dibenzyl ketone and benzyl under extremely basic conditions. The synthesis process could be further understood by observing the mechanism portrayed in Figure 1. According to the figure, the dibenzyl ketone will first loose an alpha hydrogen to form the enolate intermediate.
In a small reaction tube, the tetraphenylcyclopentadienone (0.110 g, 0.28 mmol) was added into the dimethyl acetylene dicarboxylate (0.1 mL) and nitrobenzene (1 mL) along with a boiling stick. The color of the mixed solution was purple. The solution was then heated to reflux until it turned into a tan color. After the color change has occurred, ethanol (3 mL) was stirred into the small reaction tube. After that, the small reaction tube was placed in an ice bath until the solid was formed at the bottom of the tube. Then, the solution with the precipitate was filtered through vacuum filtration and washed with ethanol. The precipitate then was dried and weighed. The final product was dimethyl tertraphenylpthalate (0.086 g, 0.172mmol, 61.42%).
The goal of this two week lab was to examine the stereochemistry of the oxidation-reduction interconversion of 4-tert-butylcyclohexanol and 4-tert-butylcyclohexanone. The purpose of first week was to explore the oxidation of an alcohol to a ketone and see how the reduction of the ketone will affect the stereoselectivity. The purpose of first week is to oxidize the alcohol, 4-tert-butylcyclohexanol, to ketone just so that it can be reduced back into the alcohol to see how OH will react. The purpose of second week was to reduce 4-tert-butylcyclohexanol from first week and determine the effect of the product's diastereoselectivity by performing reduction procedures using sodium borohydride The chemicals for this lab are sodium hypochlorite, 4-tert-butylcyclohexanone
For this experiment we have to use physical methods to separate the reaction mixture from the liquid. The physical methods that were used are filtration and evaporation. Filtration is the separation of a solid from a liquid by passing the liquid through a porous material, such as filter paper. Evaporation is when you place the residue and the damp filter paper into a drying oven to draw moisture from it by heating it and leaving only the dry solid portion behind (Lab Guide pg. 33.).
The purpose of conducting experiment was to determine the identity of white compound. Based on the 5 gram of unknown white compound several experiment conducted including solubility test, pH test, flame test, and ion test. Several materials including chemicals used throughout experiment and will be described through paragraphs.
In the first section, the Synthesis of Aspirin, salicylic acid was weight to be 3.029 grams using mass by difference since it was weighed on a 150 milliliter beaker. 9.23 milliliters of the acetic anhydride and 14 drops of 85 percent phosphoric acid were added to this beaker. A Bunsen burner provided by the laboratory was then used to boil the just mixed combination by producing a flame underneath the positioned beaker on top, and then allowed to cool for several minutes after the Bunsen burner flame was terminated. Two quantities of distilled water were then added to this mixture to make it cool even further, which were 41 drops and 30 milliliters. After cooling for some time, this beaker was placed into an ice bath in order to start the crystallization process. A glass rod was used to scratch around the bottom and the sides to catch all of the crystallized Aspirin that was being formed during this whole process. Then, by using a Buchner funnel and filter paper, which was placed on top of the flask connected to a water aspirator with rubber tubing, the excess liquid was removed from the just scraped Aspirin crystals when the Aspirin was placed on the filter paper. Using a medicine dropper, the Aspirin crystals on the filter paper were washed with distilled water just so that any non-pure substances were removed from the crude product. When these crystals were then ultimately dry, they were placed on a watch glass and put into an oven for 30 minutes. Then they were weighed by mass by difference to yield 2.4667 grams of crude s...
The purpose of the experiment was to study the kinetics of the hydrolysis of ester, p-nitrophenyl acetate (NPA) that is catalyzed by the buffer imidazole (Im). In terms of kinetics, specifically speaking, the rate of reaction as determined by the concentration, reaction orders, and rate constant with each species in a chemical reaction. By using the concentration of the catalyst and the temperature, the overall reaction rate was determined. The rate constants of K0, Kobs, and Kcat can be derived via the plotting of the absorbtion at 400nm of p-nitrophenol vs. the concentration of the catalyst imidazole. Lastly, the free energy of activation, ΔGǂ, that is necessary to force the reactant’s transformation of the reactants to the transition state structure will be determined by using the equation ΔGǂ = ΔHǂ – TΔSǂ derived from the Eyring plot.
Purpose/Introduction: In this experiment, four elimination reactions were compared and contrasted under acidic (H2SO4) and basic (KOC(CO3)3) conditions. Acid-catalyzed dehydration was done on 2-butanol and 1-butanol; a 2o and 1o alcohol, respectively. The base-induced dehydrobromination was performed on 2-bromobutane and 1-bromobutane isomeric halides. The stereochemistry and regiochemistry of the four reactions were analyzed by gas chromatography (GC) to determine product distribution (assuming that the amount of each product in the gas mixture is proportional to the area under its complementary GC peak).
Ensure gloves are worn at all times when handling strong acids and bases within the experiment of the preparation of benzocaine. 4-aminobenzoic acid (3.0g, 0.022 moles) was suspended into a dry round-bottomed flask (100cm3) followed by methylated sprits (20 cm3). Taking extra care the concentrated sulphuric acid of (3.0 cm3, 0.031 moles) was added. Immediately after the condenser was fitted on, and the components in the flask were swirled gently to mix components. It should be ensured that the reactants of the concentrated sulphuric acid and the 4-aminobenzoic acid were not clustered in the ground glass joint between the condenser itself and the flask. In order to heat the mixture to a boiling point, a heating mantle was used and then further left for gently refluxing for a constituent time of forty minutes. After the duration of the consistent forty minutes the rou...
The purpose of the experiment was to use the method of simple distillation to separate hexane, heptane, and a mixture of the two compounds into three different samples. After separation, gas chromatography determined the proportions of the two volatile compounds in a given sample.
- The amount of times the mixture was stirred. We stirred the mixture until the Ammonium Nitrate was dissolved, so the amount of times we stirred after each teaspoon was different.
The aim of this experiment was to investigate the affect of the use of a catalyst and temperature on the rate of reaction while keeping all the other factors that affect the reaction rate constant.
The sample was subjected to steam distillation as illustrated in Figure 1. A total of 50ml of distillate was collected while recording the temperature for every 5.0 ml of distillate. The distillate was transferred into a 250ml Erlenmeyer flask and 3.0 g of NaCl was added. The flask was cooled and the content was transferred into a 250-ml separatory funnel. Then 25.0ml of hexane was added and the mixture was shaken for 5 minutes with occasional venting. The aqueous layer was discarded and the organic layer was left inside. About 25.0ml of 10% NaOH was then added and the mixture was shaken as before. The aqueous layer was collected and then cooled in an ice bath. It was then acidified with enough 6.00 M HCl while the pH is being monitored with red litmus paper. Another 25.0 ml of hexane was added and the mixture was shaken as before. The hexane extract was saved and a small amount of anhydrous sodium sulfate was added. The mixture was then swirled for a couple of minutes then filtered. A small amount of the final extracted was tested separately with 1% FeCl3 and Bayer’s reagent.
Firstly, an amount of 40.90 g of NaCl was weighed using electronic balance (Adventurer™, Ohaus) and later was placed in a 500 ml beaker. Then, 6.05 g of Tris base, followed by 10.00 g of CTAB and 3.70 g of EDTA were added into the beaker. After that, 400 ml of sterilized distilled water, sdH2O was poured into the beaker to dissolve the substances. Then, the solution was stirred using the magnetic stirrer until the solution become crystal clear for about 3 hours on a hotplate stirrer (Lab Tech® LMS-1003). After the solution become clear, it was cool down to room temperature. Later, the solution was poured into 500 ml sterilized bottle. The bottle then was fully wrapped with aluminium foil to avoid from light. Next, 1 mL of 2-mercaptoethanol-β-mercapto was added into fully covered bottle. Lastly, the volume of the solution in the bottle was added with sdH2O until it reaches 500 ml. The bottle was labelled accordingly and was stored on chemical working bench.