Cold Fusion: The Continuing Mystery
In March of 1989, a discovery was made that rocked the scientific world. Stanley Pons and Martin Fleischman had announced that they were able to create and sustain a cold fusion process. After intense media attention, and corresponding interest in future test, the subject seemed to have faded away. Future tests proved inconclusive, and when the quick promise of easy energy didn’t materialize, most quickly forgot the subject. Little is said about the continuing research in the scientific community to further our understanding of the free energy enigma. Is it science fiction, on the border of legitamete science, or is it a practical field worthy of serious attention?
Cold Fusion is the merging of two dissimilar metal hydrides. The process is exothermic, and can generate energy in one of two ways. Energy can be input in to a system and multiplied, or energy alone can be generated although in a much smaller amount. For example, one watt of energy can be input and 3 watts recovered. Some systems are capable of producing hundreds of watts per individual watt. The actual physics of the reaction is not completely understood. Some claim it is merely a chemical reaction not yet understood, while others are convinced it is a nuclear reaction.
One example is a cold fusion cell which used .04 grams of metal hydride. It produced 86 megajoules over a two month period. A similar chemical reaction would have required 2,000 grams of chemicals to produce the same amount of energy. Another interesting point regarding this cell was the fact it had to be deliberately shut down. There was no sign of the reaction tapering off.
The skepticism regarding cold fusion stems from two separate studies, one done by MIT, and the other by the Energy Resources Advisory Board. The MIT study has been palled by attacks on the methods used to present the information. The chief science writer at the Institute denounced the study and resigned. The report contained altered graphs and an unclear method. The ERAB report was inconclusive, but presented to congress in a such a way as to present all of the negatives in order to maintain funding for their existed programs, instead of transferring research money to others.
Numerous labs across the...
... middle of paper ...
...clear reaction at all. Some think that the process is merely a chemical reaction not yet understood by today’s laws of chemistry. This presents numerous gray areas in the understanding of the reactions taking place in the experiments. If indeed it is a chemical reaction then there is some flaw in our understanding of chemical reactions. The lack of nuclear byproducts when in theory there should be lends strong credence to this belief though. Only continued experimentation and new exploration will help explain the mystery.
The use of cold fusion would be a boon to mankind. It’s use would solve all energy delimmas currently facing the petroleum dependant modern society. Elimination of pollution, economy, and ready availability of raw materials would be a tremendous improvement over today’s combustion engines and chemical cells. More so than any other alternative energy solution, cold fusion presents a source that is truly renewable and, if it lives up to it’s hypothesis, a large enough amount of power. No other means to date has proven it’s practical use on a large scale. Cold fusion could be the solution to the problems of global warming and pollution.
Introduction Fusion centers are easily described by their names. They are a collaboration between several different agencies that combine to form one united Criminal Justice front against terrorism. All agencies, such as the FBI, Department of Homeland Security (DHS) and local police, work together to analyze and gather potential information on threats and possible terrorist attacks against the United States. They also serve as a sort of hub to pass out information needed to other agencies. The creation of Fusion Centers helps make local law enforcement more capable in responding to and fighting terror threats.
All these effects were the cause of the discovery of nuclear fission and its properties. Nuclear Fusion Nuclear fusion is the process used by the sun and the stars in our solar system to produce their energy. Fusion involves smashing hydrogen atoms together at high velocities to form helium, and the matter is made into energy.
Albert Einstein predicted that mass could be converted into energy early in the century and was confirmed experimentally by John D. Cockcroft and Ernest Walton in 1932. In 1939, Otto Hahn and Fritz Strassmann discovered that neutrons striking the element uranium caused the atoms to split apart. Physicists found out that among the pieces of a split atom were newly produced neutrons. These might encounter other uranium nuclei, caused them to split, and start a chain reaction. If the chain reaction were limited to a moderate pace, a new source of energy could be the result. The chain reaction could release energy rapidly and with explosive force.
In a fusion, two atoms’ nuclei join to create a much heavier nucleus.1 The two atoms collide and together make a new atom while releasing neutrons in the form of energy. Imagine this as two cars in a head-on collision. When they collide, they stick together (not forming a new atom like in nuclear fusion, but let’s pretend,) and when they crash, some of the bumper flies off. The atoms collide and neutrons, like the bumper, fly off in the form of energy.
Nuclear energy must be a consideration for the future with the rapidly depleting supply of fossil fuels. This type of energy can be created through nuclear fission and nuclear fusion. Nuclear fission is the splitting of a heavy atom into two or more parts, releasing huge amounts of energy. The release of energy can be controlled and captured for generating electricity. Nuclear fusion involves bombarding hydrogen atoms together to form helium. In the long run, nuclear fusion has greater potential than fission.
As of now, 80% of global energy is provided by fossil fuels. Wind and solar energy sources are unlikely to completely replace fossil fuels in the coming decades due to infrastructure problems. A drop in global energy provided by oil starting sometime between 2012 and 2014 (Chris) is also expected. As a result of these circumstances more research must be done in other forms of energy generation in order to keep with energy demand as countries industrialize and populations grow. Despite claims that nuclear fusion will not be practically realized, research into nuclear fusion should be increased as it is not harmful to the environment, has nearly limitless fuel, and is inherently safe. Fusion power produces no greenhouse gasses and no long-lived radioactive products, making it a very clean energy source. According to the article “Safety and Environment,” “Fusion power does not produce any greenhouse gasses (GHGs) or other atmospheric pollutants during operation.” It has become an increasing desire for things, such as cars and companies, to become environmentally friendly or “green.” The fact that fusion power would generate no greenhouse gasses inherently is a big plus. Furthermore, according to the same article, “SEAFP concluded that fusion has very good inherent safety qualities, among which... no production of long-lived, highly radiotoxic products.” The radiotoxic products produced by nuclear fission pose a large environmental problem due to storage required. Fusion is much more environmentally friendly than fission because it lacks these products.
Central Idea: Nuclear energy only contributes a small amount to the world’s electricity yet it has hazards and dangers that far out-way its benefits. There are many other alternative power producing sources that can produce energy more efficiently and more safely than nuclear power plants can.
Currently, plants use fission reactions, which is the bombardment of atoms with neutrons to split atoms into new materials, releasing the energy which we have all come to rely on. Fusion is essentially the opposite of fission. Fusion is the combination of atoms to make new elements, what is happening at the core of our sun currently. When atoms are fused, a massive amount of energy is released, making the cost of producing nearly free once fusion is obtained. One other large advantage of fusion energy is the by-products produced by the chain reaction in fusion. The second most abundantly used power source in fission reactors behind uranium is plutonium. Plutonium could be created by the fusion reactions, giving people not only energy from the initial reaction, but even more fuel to use for fission reactors
"Science is sometimes blamed for the nuclear dilemna. Such blame confuses the messenger with the message. Otto Hahn and Fritz Strassman did not invent nuclear fission; they discovered it. It was there all along waiting for us, the turn of the screw" (Rhodes- 784).
To understand the technology behind plasma fusion, fusion itself must be understood. Fusion is the combining of two or more atoms of low mass, which are initially attracted to each other, to form one atom of greater mass. When two atoms combine to form a single atom, they have fused. This fusing releases a large amount of energy with respect to the amount of mass and energy that was initially put into the reaction. This combination releases energy in the form of light and heat.
is very large. In practical units, the fission of 1 kg (2.2 lb) of uranium-235
These are just 2, quite recent, examples of failures in the various different forms of alternate energy and shows that there is still a lot of work to be done to make these as safe as possible. However, despite these disasters, the research of these energy sources still goes on and it is very likely that they will be pivotal in the future.
Nuclear fusion occurs when two atomic nuclei collide with enough energy to bind together to form one nucleus. Nuclear fusion occurs in the core of our sun, and is the source of its tremendous heat. In the sun hydrogen nuclei, single protons, fuse together and form a new nucleus. In the conversion, a small amount of mass is converted into energy. It is this energy that heats the sun.
Nuclear energy is generated by a process called fission. Fission occurs within the reactor of a nuclear power plant when a neutron is fired at an atom of uranium causing it to split and release subsequent neutrons.1 These are able to crash into other uranium atoms causing a chain reaction and releasing a great deal of heat energy.
...ion of fusion power plant when the technology has achieved a certain level. This level will be reach with free market and patents right, which will create incentive for scientist to make innovation. Hopefully, countries, in the future, will find co-operating relationship’ among each other and solve environmental problems.