Wait a second!
More handpicked essays just for you.
More handpicked essays just for you.
Indirect determination of an enthalpy change of reaction
Heat effects and calorimetry lab
Determination of the enthalpy change associated with a reaction
Don’t take our word for it - see why 10 million students trust us with their essay needs.
The objective of the lab is to determine the heat of the reaction between magnesium and hydrochloric acid in the calorimeter. To determine the enthalpy change of the chemical reaction, a calorimeter was placed onto the workbench. A balance was place on the workbench. The calorimeter was placed onto the balance and weighed to be 18.600 grams. A thermometer was attached to the calorimeter. The initial temperature recorded is 21.5 C. 50 mL of 1M of Hydrochloric Acid was placed into the calorimeter. 0.150 grams of magnesium was added into the calorimeter. A chemical reaction had occurred and the observed temperature was 34.5 C. The calorimeter was placed onto the electronic scale and was measured to be 68.738 grams. The used calorimeter were …show more content…
In experiment’s 2rd trail, a new calorimeter was placed onto the workbench. It was placed onto the electronic scale and weighed 18.600 grams. A thermometer was attached to the calorimeter. The initial temperature was 21.5 C. 50 mL of 1M Hydrochloric Acid was placed into the calorimeter. 0.250 grams of magnesium was placed into the calorimeter. A chemical reaction occurred and the temperature recorded was 43.2 C. The calorimeter was placed onto the electronic scale and weighed to be 68.839 grams. Afterwards, the calorimeter was discarded. In the experiment's third trial, a new calorimeter was placed onto the workbench. It was then placed onto the electronic scale and it weighted 18.600 grams. A thermometer was attached to the calorimeter. The initial temperature recorded was 21.5 C. 50 mL of 1M Hydrochloric Acid was placed into the calorimeter. 0.350 grams were added into the calorimeter. A chemical reaction occurred. The recorded temperature is 51.8 C. The calorimeter was placed onto the electronic scale and the total mass is 68.921 grams. All materials were …show more content…
By dividing .350 grams of magnesium by the molar mass, 24.305 g/mol, the amount of moles used in the reaction is calculated to be .0144 moles. Afterwards, the following equation, Qrnx= -(M * C * t+ Ccal * t) , is used to determine amount of heat in the chemical reaction. M is determined by subtracting the mass of the calorimeter and its contents after the reaction, 68.921 grams., by the initial mass of the calorimeter, 18.600 grams. After the calculation, M is calculated to be 50.321 grams. t is determined by subtracting the final temperature, 51.8 C, from the initial temperature, 21.5 C. From the calculation, is determined to be 30.3 C. From the background information, Ccal is determined to be 9.30 J/°C and C is determined to be 4.18 J/g°C. By plugging the determined values into the equation, Qrnx= -(M * C *t + Ccal *t ), Qrnx, the heat of the reaction is determined to be -6655.15 J/g(c). Finally, to determine the enthalpy value of the reaction, Qrnx,--6655.15 J/g(c), is divided by the number of moles of magnesium used in the reaction, .0144 moles , the enthalpy value of the determined to be -462162.9
Two equations were used in this experiment to determine the initial temperature of the hot water. The first equation
Tf-Ti). Next, subtract the initial temperature, 25 degrees from the final temperature, 29 degrees putting the change in temperature at 4 °C. To calculate the heat absorbed by the water in calorimeter, use the formula (q = mCΔT). Plug in 50 mL for (m), 4.184 J for (C) and 4 °C for the initial temperature (ΔT), then multiply.
The purpose of this experiment is to try to find the original temperature of the hot water in the heater using the 60 degrees C thermometer. Use your 60°C thermometer, and any materials available in your laboratory, to determine the temperature of the water in the coffee pot. During this experiment we calculated the original temperature of a heater after it had been cooled down, and we did this by measuring hot, cold, and warm water, with a thermometer that had tape covering 60 degrees and up. When preformed each of these experiments with each temperature of water, plugging them into the equation (Delta)(Ti – hot – Tf) T Hot x Cp x Mass(Cold) = (Delta)(Tf – Ti – Cold) T Cold x Cp x Mass(Hot)(d
First, a calorimeter was constructed with three standard styrofoam cups. One cup was stacked within the second for insulation, while the third cup was cut in half to be used as a lid. The lid was made to increase accuracy when recording the temperature. The temperature probe hooked up to Logger Pro software poked a hole in the top of the calorimeter by applied force with the end of the probe through the Styrofoam. Meanwhile, 40mL of deionized water were measured out in two clean 50 mL graduated cylinders, and poured into 100 mL beakers. The beakers and graduated cylinders were cleaned with deionized water to avoid contamination that may cause error. One of the beakers was placed onto a hot plate, which was used to heat the water in the beaker. The other beaker rested at room temperature. Once heated and at room temperature, the initial temperature was measured with the probe. Next, the two 40 mL of deionized water were poured into the calorimeter, quickly sealed with the lid, and the temperature probe emerged through the top of the calorimeter into the water to measure the temperature so the calorimeter constant would be determined. The equations used to determine the calorimeter constant were Δq = mCΔT and Δq =
We began this investigation by suiting up in lab aprons and goggles, we then gathered our materials, found a lab station and got to work. We decided to start with the magnesium in hydrochloric acid first, we measured out 198.5 L of HCl and put it in the foam-cup calorimeter and took initial temperature reading. We then selected a piece of magnesium ribbon and found its mass: 0.01g. This piece was placed in the calorimeter and the lid was shut immediately to prevent heat from escaping. We “swirled” the liquid mixture in the calorimeter to ensure a reaction, and waited for a temperature change. After a few moments, the final temperature was recorded and DT determined.
3. Why are the crucible and lid heated at the beginning of the experiment before being weighed?
The Effect of Temperature of Hydrochloric Acid on the Rate of Reaction Between Hydrochloric Acid and Magnesium
The Effect of Concentration of Hydrochloric Acid on the Rate of Reaction with Magnesium Aim: To investigate the effect of concentration of hydrochloric acid on the rate of reaction with magnesium Prediction: As the concentration of the hydrochloric acid increases, so will the rate of reaction Hypothesis: In a reaction, particles of two different reactants react together to form a product. The reaction only takes place on account of two things, if the particles collide, and if the collision has enough 'activation energy'. The two reactant particles, in this case magnesium particles and hydrochloric acid particles, must collide with each other on the correct 'collision course'. If this does not occur then no chemical reaction will take place. The reaction must also have enough energy, this can be affected by temperature, the more heat the particles have the faster they move and so the more energy therefore more chance of successful collisions.
In this lab, I determined the amount of heat exchanged in four different chemical reactions only using two different compounds and water. The two compounds used were Magnesium Hydroxide and Citric Acid. Both compounds were in there solid states in powder form. Magnesium Hydroxide was mixed with water and the change in heat was measured using a thermometer. The next reaction combined citric acid and magnesium hydroxide in water. The change in heat was measured as well. For the third reaction citric acid was placed in water to measure the change in heat. In the last reaction, citric acid was combined with water. The heat exchanged was again measured. It is obvious we were studying the calorimetry of each reaction. We used a calorimeter
" This means that therefore the enthalpy change of a reaction can be measured by the calculation of 2 other reactions which relate directly to the reactants used in the first reaction and provided the same reaction conditions are used, the results will not be affected. We have the problem set by the experiment to determine the enthalpy change of the thermal decomposition of calcium carbonate. This is difficult because we cannot accurately measure how much thermal energy is taken from the surroundings and provided via thermal energy from a Bunsen flame into the reactants, due to its endothermic nature. Therefore, using the enthalpy changes obtained in reaction 1 and reaction 2 we can set up a Hess cycle.
be yes as I will then be able to use enthalpy change of reaction to
- Temperature was measured after and exact time i.e. 1 minute, 2 minutes, 3 minutes.
The specific heat of copper was calculated to be .425 J/goC by using the relationship of the specific heat of water and copper. The percent error of the aforementioned specific heat of copper is 9.4%. The unknown metal’s specific heat was found to be 1.104 J/goC based on data collected from the experiment, however, the true identity of the unidentified metal was revealed to be Magnesium. Given the identity of the metal, the percent error was found to be 59.33%. This percent error is incredibly high, some potential sources of this high percentage is the nature of the styrofoam cup, in that the cup could not insulate the water very well, allowing the heat energy to not be contained in the cup. Another possible source of error would be human
Investigating the Effects of Temperature on the Rate of Reaction between Magnesium and Hydrochloric Acid
For this experiment, consider your system to consist of mixing a given mass m1 of a ?hot" specimen with specific heat c1 at te...