Wait a second!
More handpicked essays just for you.
More handpicked essays just for you.
Chemical change and physical change
Don’t take our word for it - see why 10 million students trust us with their essay needs.
Recommended: Chemical change and physical change
Energy is defined as an exclusive driving force for all physical and chemical changes. Energy exists in many forms such as heat, mechanical work, light, sound, electric, and chemical energy. Energy can be transferred through heat flow, like when a pot of water is put on the stove and the water gets hotter. Something happened here and something changed, hence a driving force for a physical and chemical change. It is important to know that energy does not have mass of a definite shape and these characteristics make it hard to identify. When energy is absorbed temperature rises, therefore, when energy is lost it causes temperature to decrease. Energy also causes the release of electromagnetic radiation melting, vaporization, crystallization, …show more content…
One of the most important things in caliometry is the caliometer. This is a device used to measure the quantity of heat in a reaction. There are many different types of caliometers, some are used to measure the heat capacity of materials, and others measure the aspects the heat generates by new or untested reactions, heat of combustion and burn rates. One type of caliometer is reaction caliometers. These measure heat energy released or absorbed during a reaction that occurs inside the caliometer. Bomb caliometer are used to measure heat of combustion of a particular reaction. Differential scanning caliometers heat flow into a sample is usually measured differentially. A popular caliometer used in biochemistry is called the isothermal titration caliometer. In this caliometer the heat of the reaction is used to follow a titration experiment. It is used in biochemistry because it t facilitates determination of substrate binding to enzymes. Other caliometers that are sometimes used are x-ray micocaliometer, and high-energy particle caliometer. These two caliometers are not as often used, but can still be included in the different types. It is apparent that there are many different types of caliometers and some are used more commonly than others
First, a calorimeter was constructed with three standard styrofoam cups. One cup was stacked within the second for insulation, while the third cup was cut in half to be used as a lid. The lid was made to increase accuracy when recording the temperature. The temperature probe hooked up to Logger Pro software poked a hole in the top of the calorimeter by applied force with the end of the probe through the Styrofoam. Meanwhile, 40mL of deionized water were measured out in two clean 50 mL graduated cylinders, and poured into 100 mL beakers. The beakers and graduated cylinders were cleaned with deionized water to avoid contamination that may cause error. One of the beakers was placed onto a hot plate, which was used to heat the water in the beaker. The other beaker rested at room temperature. Once heated and at room temperature, the initial temperature was measured with the probe. Next, the two 40 mL of deionized water were poured into the calorimeter, quickly sealed with the lid, and the temperature probe emerged through the top of the calorimeter into the water to measure the temperature so the calorimeter constant would be determined. The equations used to determine the calorimeter constant were Δq = mCΔT and Δq =
The purpose of this lab was to calculate the specific heat of a metal cylinder
When something gives us energy, it means more than to just give us the required power to work or move along for such a specific task. In biological terms, it means to have your energy be transported through your body and placed by cells into biomolecules. Biomolecules such as lipids and carbohydrates. It then stores that energy in our body.
Another science that relates to potential energy is kinetic energy. Kinetic energy is the energy something has because an object is moving. Dropping a soccer ball converts the potential energy to kinetic energy. In all, energy makes things happen which is why energy can also be called the
For the heat inactivation, two sets of 11 tubes were set up. The indicated amounts of buffer, water, and ONPG listed in table 10 were added to each tube. In addition, the control enzyme (0.1ml) was added to each tube of the control set and the same amount of heated enzyme was added to each tube of the heated set. The absorbance readings were taken and recorded in table 10. Finally, two Lineweaver-Burk plots were created. The plot for the heated set is represented by graph 10 and graph 11 represents the control set. The Km and the Vmax for the heated set and the control set were determined.
Energy can never be created or destroyed. Energy may be transformed from one form to another, but the total energy of an isolated system is always constant.
We are dependent on energy for almost everything in our lives. When the outside temperature rises a little, we immediately switch on the air conditioner to keep our house cool. This is using up of energy. We have starting taking things for granted and we have started wasting energy unnecessarily. Energy is limited and hence to maintain the quality of life, it is important that we use our energy resources wisely. If we do not conserve energy, the energy will exhaust and we will have nothing to use.
type of energy is lost or gained, and whether or not a factor that is
The primary goal of this experiment was to determine which types of glassware are the most accurate and precise in measuring substances. Another goal of this experiment was to help familiarize ourselves with the different types of glassware, and how we should handle the laboratory equipment. The accuracy and precision of a particular type of glassware is important because it allows for accurate measurements when performing different experiments. It also allows us to differentiate between glassware that is better for containing substances versus glassware that can deliver substances more accurately. In order to measure the accuracy and precision of the different types of glassware, we first chose seven different types of glassware. The general
In this lab, I determined the amount of heat exchanged in four different chemical reactions only using two different compounds and water. The two compounds used were Magnesium Hydroxide and Citric Acid. Both compounds were in there solid states in powder form. Magnesium Hydroxide was mixed with water and the change in heat was measured using a thermometer. The next reaction combined citric acid and magnesium hydroxide in water. The change in heat was measured as well. For the third reaction citric acid was placed in water to measure the change in heat. In the last reaction, citric acid was combined with water. The heat exchanged was again measured. It is obvious we were studying the calorimetry of each reaction. We used a calorimeter
Measure and record the temperature of the water in the Styrofoam cup. Leave cardboard cover on until the heated metal is ready to be transferred into the calorimeter.
The first things we learned in EGEE I thought I already knew, but I only had superficial knowledge about such things energy, heat, and radiation. For example, I thought that energy was simply the ability to work. However I learned that it is the capacity to do work (Kraushaar and Ristinen 8), generating heat, and emitting radiation (lecture 1/9/02). I also learned that the formula for energy is work = force x distance (1/9/02). Heat, we learned, is the ability to change the temperature or phase of a substance; radiation is energy emitted in the form of waves traveling at the speed of light (1/11/02). I always thought that heat was the temperature of something, and radiation was emitted from microwaves and nuclear waste. Now I know more about these things than I did before.
IC Temperature Sensors agreed that there is a major diversity of how thermal sensors read the heat, for example, a thermometer measures temperature with mercury rising as heat increases, showing the temperature on the side. However, thermometers only measure the temperature when it is close up to the heat source. Thermographic sensors are long ranged temperature measuring devices which makes them more ideal for this experiment. Thermographic sensors read the temperature using thermograms. Thermograms show a variety of different shades of color depending the temperature. The temperature is based off a number of different variables such as thermal radiation (2007). Thermal sensors that use thermography have many uses that they were created for. Thermal sensors are used in the military to detect explosives frequently. The marines use thermography to spot enemies also. Thermography is not only used by the military, it is also used for medical reasons such as detection of breast cancer (Flir Threat Detection,
Energy is an odd concept, it is something that is neither here nor there yet has a profound impact on everything, both organic and inorganic. However, energy surrounds us in more ways than is commonly believed; it is possible that matter is only a form of energy. In fact, according to Albert Einstein, matter and energy are different forms of the same thing (“Do Antimatter and Matter Destroy Each Other?”). Through analyzing the superposition of bosons (particles without mass) and fermions (particles with mass), transformations between energy and matter, the creation of mass, and the mass of energy, the existence of what humans consider to be matter will be questioned.
There are three laws of thermodynamics in which the changing system can be followed in order to return to equilibrium. In order for a system to gain energy, the surroundings have to supply it, and vice versa when the system loses energy, the surroundings must gain it. As the energy is transferred it can be converted from its original form to another as the transfer takes place, but the energy will never be created or destroyed. The first law of thermodynamics, also known as the law of conservation of energy, basically restates that energy can’t be destroyed or created “as follows: the total energy of the universe is a constant.” All around, the conservation of energy is applied.