Enzymes are biological catalysts that increase the rate of chemical reactions within the cells without any change at the end (Palmer, 1991). In the absence of enzymes, most biological process might not occur. The purpose of an enzyme is to allow the cell carry out its functions in time. As the structure of most biological molecules play a major role in their function, the three dimensional structure of an enzyme is responsible for its catalytic activities. Therefore, enzymes are proteins made of amino acids. This essay further points out the features of enzymes that accounts for why, they are made of proteins, not other macromolecules. Macromolecules are large molecules formed by polymerization of smaller molecules. The four classes of macromolecules are Carbohydrates, lipids, proteins and nucleic acid. Carbohydrates are made of carbon, hydrogen and, and Oxygen, the simplest form of carbohydrates are monosaccharide or simple sugar (Hames and Hopper, 2011). A monosaccharide consists of an aldehyde or ketone group with hydroxyl group added to some carbon atoms, for example glucose and fructose. Monosaccharide join together to form polysaccharides in different ways. Disaccharides are the simplest polysaccharides, formed by the glycosidic linkage of two monosaccharide. Longer chains of polysaccharides are known as oligosaccharides. Secondly, Lipids constitute a range of molecules such as waxes, fat, sterols, some insoluble vitamins, and so on. They are mainly involved in storage of energy. Fatty acids form part of lipids; they are hydrophobic chains with a terminal carboxylic acid group (Hames and Hooper, 2011). Glycerolipids, glycerophospholipids and sphingolipids are other categories of lipids. They function on biological memb... ... middle of paper ... ...mistry and Biology. Yale university press. Hames, D. and Hooper, N. (2011). Biochemistry (fourth edition). Garland science, Taylor and Francis group, LLC. Koshland, D. E. (1958). "Application of a Theory of Enzyme Specificity to Protein Synthesis". Proc. Natl. Acad. Sci. 44 (2): 98–104 Nelson, L. D., and Cox, M.M., (2008). Lehninger principles of Biochemistry, (fifth Edition). W.H. Freeman and Company. Palmer, T. (1991). Understanding Enzymes (Fourth edition). Ellis Horwood limited. Price, N. C., and Stevens, L. (1999). Fundamentals of Enzymology: The cell and molecular biology of catalytic proteins (Third edition). Oxford University Press Inc. Watson. J.D., Crick. F.H., (April 1953). "Molecular structure of nucleic acids; a structure for deoxyribose nucleic acid". Nature 171 (4356): 737–8. Bibcode 1953Natur.171.. 737W. doi: 10.1038/171737a0. PMID 13054692.
Living organisms undergo chemical reactions with the help of unique proteins known as enzymes. Enzymes significantly assist in these processes by accelerating the rate of reaction in order to maintain life in the organism. Without enzymes, an organism would not be able to survive as long, because its chemical reactions would be too slow to prolong life. The properties and functions of enzymes during chemical reactions can help analyze the activity of the specific enzyme catalase, which can be found in bovine liver and yeast. Our hypothesis regarding enzyme activity is that the aspects of biology and environmental factors contribute to the different enzyme activities between bovine liver and yeast.
Catalase is a common enzyme that is produced in all living organisms. All living organisms are made up of cells and within the cells, enzymes function to increase the rate of chemical reactions. Enzymes function to create the same reactions using a lower amount of energy. The reactions of catalase play an important role to life, for example, it breaks down hydrogen peroxide into oxygen and water. Our group developed an experiment to test the rate of reaction of catalase in whole carrots and pinto beans with various concentrations of hydrogen peroxide. Almost all enzymes are proteins and proteins are made up of amino acids. The areas within an enzyme speed up the chemical reactions which are known as the active sites, and are also where the
Mader, S. S. (2010). Metabolism: Energy and Enzymes. In K. G. Lyle-Ippolito, & A. T. Storfer (Ed.), Inquiry into life (13th ed., pp. 105-107). Princeton, N.J: McGraw Hill.
Enzymes are biological catalysts, which are proteins that help speed up chemical reactions. Enzymes use reactants, known as the substrates, and are converted into products. Through this chemical reaction, the enzyme itself is not consumed and can be used over and over again for future chemical reactions, but with the same substrate and product formed. Enzymes usually only convert specific substrates into products. Substrates bind to the region of an enzyme called the active site to form the enzyme/substrate complex. Then this becomes the enzyme/products complex, and then the products leave the enzyme. The activity of enzymes can be altered based on a couple of factors. Factors include pH, temperature and others. These factors, if they become
Purpose: The purpose of this lab is to explore the different factors which effect enzyme activity and the rates of reaction, such as particle size and temperature.
“Enzymes are proteins that have catalytic functions” [1], “that speed up or slow down reactions”[2], “indispensable to maintenance and activity of life”[1]. They are each very specific, and will only work when a particular substrate fits in their active site. An active site is “a region on the surface of an enzyme where the substrate binds, and where the reaction occurs”[2].
Background information:. Enzyme Enzymes are protein molecules that act as the biological catalysts. A Catalyst is a molecule which can speed up chemical reactions but remains unchanged at the end of the reaction. Enzymes catalyze most of the metabolic reactions that take place within a living organism. They speed up the metabolic reactions by lowering the amount of energy.
Proteins are one of the main building blocks of the body. They are required for the structure, function, and regulation of the body’s tissues and organs. Even smaller units create proteins; these are called amino acids. There are twenty different types of amino acids, and all twenty are configured in many different chains and sequences, producing differing protein structures and functions. An enzyme is a specialized protein that participates in chemical reactions where they serve as catalysts to speed up said reactions, or reduce the energy of activation, noted as Ea (Mader & Windelspecht).
Deoxyribo Nucleic Acid (DNA) is a chromosome found in the nucleus of a cell, which is a double-stranded helix (similar to a twisted ladder). DNA is made up of four bases called adenine (A), thymine (T), guanine (G), and cytosine (C), that is always based in pairs of A with T and G with C. The four bases of A, C, G, and T were discovered by Phoebus Levene in 1929, which linked it to the string of nucleotide units through phosphate-sugar-base (groups). As mention in Ananya Mandal research paper, Levene thought the chain connection with the bases is repeated in a fix order that make up the DNA molecu...
Enzymes have the ability to act on a small group of chemically similar substances. Enzymes are very specific, in the sense that each enzyme is limited to interact with only one set of reactants; the reactants are referred to as substrates. Substrates of an enzyme are the chemicals altered by enzyme-catalysed reactions. The extreme specific nature of enzymes are because of the complicated three-dimensional shape, which is due to the particular way the amino acid chain of proteins folds.
Encyclopaedia of Molecular Cell biology and molecular medicine, Robert Meyers, 2004, Wiley (page 221/426/385/416/237/ 2224/5321/5414/8869)
Michener, William K. and Haeuber, Richard A., Bioscience. American Institute of Biological Science. Sep98. Vol. 48. Issue 9. p677.
Enzymes are protein molecules that are made by organisms to catalyze reactions. Typically, enzymes speeds up the rate of the reaction within cells. Enzymes are primarily important to living organisms because it helps with metabolism and the digestive system. For example, enzymes can break larger molecules into smaller molecules to help the body absorb the smaller pieces faster. In addition, some enzyme molecules bind molecules together. However, the initial purpose of the enzyme is to speed up reactions for a certain reason because they are “highly selective catalysts” (Castro J. 2014). In other words, an enzyme is a catalyst, which is a substance that increases the rate of a reaction without undergoing changes. Moreover, enzymes work with
Enzymes are essential biological catalysts in the human body that biochemical reaction. Catalysts work by lowering the activation energy, the minimum energy required for a reaction to occur, which increases the rate of the reaction (Burdge, 2014). Enzymes catalyze reactions by applying pressure onto the bonds of the substrate which lowers the activation energy and breaks these bonds to form products. Even though some enzymes have been found to be non-proteins, most of them are globular proteins which possess an active site where the substrate attaches itself (Raven, 114). The two models that describe the manner in which substrates attach to enzymes are the lock-and-key model and the induced fit model. The lock-and-key model is used to explain an enzyme that fits to only one type of substrate. It is like a lock and key in the sense that only one lock can fit into a key, therefore, only one substrate can fit into the active site of an enzyme that follows this model. On the other hand, an enzyme that follows the induced fit model slightly changes its shape in order for the substrate to...
Proteins are considered to be the most versatile macromolecules in a living system. This is because they serve crucial functions in all biological processes. Proteins are linear polymers, and they are made up of monomer units that are called amino acids. The sequence of the amino acids linked together is referred to as the primary structure. A protein will spontaneously fold up into a 3D shape caused by the hydrogen bonding of amino acids near each other. This 3D structure is determined by the sequence of the amino acids. The 3D structure is referred to as the secondary structure. There is also a tertiary structure, which is formed by the long-range interactions of the amino acids. Protein function is directly dependent on this 3D structure.