Wait a second!
More handpicked essays just for you.
More handpicked essays just for you.
Medical applications of enzymes
Medical applications of enzymes
Discussion about enzymes
Don’t take our word for it - see why 10 million students trust us with their essay needs.
Enzymes are protein molecules that are made by organisms to catalyze reactions. Typically, enzymes speeds up the rate of the reaction within cells. Enzymes are primarily important to living organisms because it helps with metabolism and the digestive system. For example, enzymes can break larger molecules into smaller molecules to help the body absorb the smaller pieces faster. In addition, some enzyme molecules bind molecules together. However, the initial purpose of the enzyme is to speed up reactions for a certain reason because they are “highly selective catalysts” (Castro J. 2014). In other words, an enzyme is a catalyst, which is a substance that increases the rate of a reaction without undergoing changes. Moreover, enzymes work with
Without enzymes, reactions wouldn’t occur and living organisms would die. For instance, the enzyme in the stomach breaks down large molecules to smaller molecules to absorb nutrition faster. Researchers experimented with enzyme activity with a potato extract. Researchers will test enzyme activity by increasing and decreasing pH levels, lowering and increasing temperature, and substrate concentration effects. In the first experiment, researchers hypothesized whether different pH levels would change how much Benzoquinone are created and how will the enzymes function in neutral pH levels than higher and lower levels. Researchers used potato extract and different levels of pH to test their hypothesis. In addition, researchers questioned at what temperature does the greatest amount of potato extract enzyme activity take place in. Researchers then hypothesized that the results would indicate the greatest amount of potato enzyme activity level will take place in room temperature. In this experiment, researchers used potato extract and different temperature levels to test the hypothesis. Moreover, researchers wanted to test the color intensity scale and how specific catechol oxidase is for catechol. In this experiment, researchers used dH2O, catechol solution, hydroquinone, and potato extract. Lastly, researchers tested the substrate concentration and how it has an effect on enzyme activity. In this experiment researchers used different measurements of catechol and 1cm of potato extract. Researchers hypothesized that the increase o substrate would level out the enzyme activity
Catalase is a common enzyme that is produced in all living organisms. All living organisms are made up of cells and within the cells, enzymes function to increase the rate of chemical reactions. Enzymes function to create the same reactions using a lower amount of energy. The reactions of catalase play an important role to life, for example, it breaks down hydrogen peroxide into oxygen and water. Our group developed an experiment to test the rate of reaction of catalase in whole carrots and pinto beans with various concentrations of hydrogen peroxide. Almost all enzymes are proteins and proteins are made up of amino acids. The areas within an enzyme speed up the chemical reactions which are known as the active sites, and are also where the
Catecholase is an enzyme formed by catechol and oxygen used to interlock oxygen at relative settings, and it is present in plants and crustaceans (Sanyal et. al, 2014). For example, in most fruits and vegetables, the bruised or exposed area of the pant becomes brown due to the reaction of catechol becoming oxidized and oxygen becoming reduced by gaining hydrogen to form water, which then creates a chain that is is the structural backbone of dark melanoid pigments (Helms et al., 1998). However, not all fruits and plants darken at the same rate. This leads to question the enzymatic strength of catecholase and how nearby surroundings affect its activity. The catecholase enzyme has an optimal temperature of approximately 40°C (Helms et al., 1998). Anything above that level would denature the tertiary or primary structure of the protein and cause it to be inoperable. At low temperatures, enzymes have a slower catalyzing rate. Enzymes also function under optimal pH level or else they will also denature, so an average quantity of ions, not too high or low, present within a solution could determine the efficiency of an enzyme (Helms et al., 1998). Also, if more enzymes were added to the concentration, the solution would have a more active sites available for substrates and allow the reaction rate to increase if excess substrate is present (Helms et al., 1998). However, if more
Abstract: Enzymes are catalysts therefore we can state that they work to start a reaction or speed it up. The chemical transformed due to the enzyme (catalase) is known as the substrate. In this lab the chemical used was hydrogen peroxide because it can be broken down by catalase. The substrate in this lab would be hydrogen peroxide and the enzymes used will be catalase which is found in both potatoes and liver. This substrate will fill the active sites on the enzyme and the reaction will vary based on the concentration of both and the different factors in the experiment. Students placed either liver or potatoes in test tubes with the substrate and observed them at different temperatures as well as with different concentrations of the substrate. Upon reviewing observations, it can be concluded that liver contains the greater amount of catalase as its rates of reaction were greater than that of the potato.
The independent variable for this experiment is the enzyme concentration, and the range chosen is from 1% to 5% with the measurements of 1, 2, 4, and 5%. The dependant variable to be measured is the absorbance of the absorbance of the solution within a colorimeter, Equipments: Iodine solution: used to test for present of starch - Amylase solution - 1% starch solution - 1 pipette - 3 syringes - 8 test tubes – Stop clock - Water bath at 37oc - Distilled water- colorimeter Method: = == ==
Investigating the Effect of Substrate Concentration on Catalase Reaction. Planning -Aim : The aim of the experiment is to examine how the concentration of the substrate (Hydrogen Peroxide, H2O2) affects the rate of reaction. the enzyme (catalase).
Pearson Baccalaureate: Standard Level Biology Developed Specifically for the IB Diploma describes enzymes as “protein molecules which act as catalysts for reactions. As catalysts, the real function of enzymes is to lower the activation energy of the reactions that they catalyze” (Ward, Tosto, McGonegal, & Damon, 2007). Enzymes are globular proteins that have an overall 3D structure. (George, 2014).
Investigating Factors that Affect the Rate of Catalase Action Investigation into the factors which affect the rate of catalase action. Planning Aim: To investigate the affect of concentration of the enzyme catalase on the decomposition reaction of hydrogen peroxide. The enzyme: Catalase is an enzyme found within the cells of many different plants and animals. In this case, it is found in celery.
The Effect of Temperature on the Activity of the Enzyme Catalase Introduction: The catalase is added to hydrogen peroxide (H²0²), a vigorous reaction occurs and oxygen gas is evolved. This experiment investigates the effect of temperature on the rate at which the enzyme works by measuring the amount of oxygen evolved over a period of time. The experiment was carried out varying the temperature and recording the results. It was then repeated but we removed the catalase (potato) and added Lead Nitrate in its place, we again tested this experiment at two different temperatures and recorded the results. Once all the experiments were calculated, comparisons against two other groups were recorded.
How the Concentration of the Substrate Affects the Reaction in the Catalase Inside Potato Cells Introduction Enzymes are made of proteins and they speed up reactions, this means that they act as catalysts. Hydrogen peroxide is a byproduct of our cell's activities and is very toxic. The enzymes in our bodies break down the hydrogen peroxide at certain temperatures they work best at body temperature, which is approximately 37 degrees. At high temperatures, the cells begin to denature. This means that the hydrogen peroxide is prevented from being broken down because they will not 'fit' into the enzyme.[IMAGE] Objective I am going to find out how the concentration of the substrate, hydrogen peroxide affects the reaction in the catalase inside the potato cells.
Enzymes have the ability to act on a small group of chemically similar substances. Enzymes are very specific, in the sense that each enzyme is limited to interact with only one set of reactants; the reactants are referred to as substrates. Substrates of an enzyme are the chemicals altered by enzyme-catalysed reactions. The extreme specific nature of enzymes are because of the complicated three-dimensional shape, which is due to the particular way the amino acid chain of proteins folds.
Enzymes are types of proteins that work as a substance to help speed up a chemical reaction (Madar & Windelspecht, 104). There are three factors that help enzyme activity increase in speed. The three factors that speed up the activity of enzymes are concentration, an increase in temperature, and a preferred pH environment. Whether or not the reaction continues to move forward is not up to the enzyme, instead the reaction is dependent on a reaction’s free energy. These enzymatic reactions have reactants referred to as substrates. Enzymes do much more than create substrates; enzymes actually work with the substrate in a reaction (Madar &Windelspecht, 106). For reactions in a cell it is important that a specific enzyme is present during the process. For example, lactase must be able to collaborate with lactose in order to break it down (Madar & Windelspecht, 105).
All the systems in the human body work together to maintain homeostasis and normal body function. The five major systems are the digestive, circulatory, respiratory, transportation and excretory systems. These systems are then, in turn made of organs, tissue and cells. All the systems are interrelated therefore if one system fails then it impacts the others.
Of the many functions of proteins, catalysis is by far the most vital. When catalysis is not present, most reactions in the biological systems take place very slowly to produce at an adequate pace for metabolising organism. The catalysts that take this role are called enzymes. Enzymes are the most efficient catalysts; they can enhance rate of reaction by up to 1020 over uncatalysed reactions. (Campbell et al, 2012).
3. They can be used over and over again- this is because they are not
In this lab, it was determined how the rate of an enzyme-catalyzed reaction is affected by physical factors such as enzyme concentration, temperature, and substrate concentration affect. The question of what factors influence enzyme activity can be answered by the results of peroxidase activity and its relation to temperature and whether or not hydroxylamine causes a reaction change with enzyme activity. An enzyme is a protein produced by a living organism that serves as a biological catalyst. A catalyst is a substance that speeds up the rate of a chemical reaction and does so by lowering the activation energy of a reaction. With that energy reactants are brought together so that products can be formed.