Wait a second!
More handpicked essays just for you.
More handpicked essays just for you.
Discuss the role proteins
The function of protein essay
Essay on the four structures of proteins
Don’t take our word for it - see why 10 million students trust us with their essay needs.
Proteins are considered to be the most versatile macromolecules in a living system. This is because they serve crucial functions in all biological processes. Proteins are linear polymers, and they are made up of monomer units that are called amino acids. The sequence of the amino acids linked together is referred to as the primary structure. A protein will spontaneously fold up into a 3D shape caused by the hydrogen bonding of amino acids near each other. This 3D structure is determined by the sequence of the amino acids. The 3D structure is referred to as the secondary structure. There is also a tertiary structure, which is formed by the long-range interactions of the amino acids. Protein function is directly dependent on this 3D structure. …show more content…
An alpha amino acid is made up of a central carbon atom, or the alpha carbon, which is linked to an amino group, a carboxylic acid group, a hydrogen atom, and a distinct R group, called the side chain. There are twenty different kinds of side chains that vary in shape, hydrogen-bonding capacity, chemical reactivity, charge, size, and hydrophobic character that are typically found in proteins. All proteins in all species are made up of the same set of twenty amino acids, with a few exceptions. In order to classify amino acids, the molecules are assorted in four groups on the basis of the general characteristics of their R groups. The four groups are hydrophobic amino acids with nonpolar R groups, polar amino acids with neutral R groups but the charge is not evenly distributed, positively charged amino acids with R groups that have a positive charge at physiological pH, and lastly, negatively charged amino acids with R groups that have a negative charge at physiological pH. The simplest amino acid is glycine because it has only a single hydrogen atom as its side chain. Alanine is the next simplest amino acid because it has a methyl group as its side chain. Seven of the twenty amino acids have side chains that are readily ionizable and they are able to accept or donate protons to facilitate reactions and form ionic bonds. Amino acids are typically abbreviated to a three-letter, which are typically the first three letters …show more content…
A polypeptide chain is a series of amino acids that are joined by the peptide bonds. Each amino acid in a polypeptide chain is called a residue. It also has polarity because its ends are different. The backbone or main chain is the part of the polypeptide chain that is made up of a regularly repeating part and is rich with the potential for hydrogen-bonding. There is also a variable part, which comprises the distinct side chain. Each residue of the chain has a carbonyl group, which is good hydrogen-bond acceptor, and an NH group, which is a good hydrogen-bond donor. The groups interact with the functional groups of the side chains and each other to stabilize structures. Proteins are polypeptide chains that have 500 to 2,000 amino acid residues. Oligopeptides, or peptides, are made up of small numbers of amino acids. Each protein has a precisely defined, unique amino acid sequence, referred to as its primary structure. The amino acid sequences of proteins are determined by the nucleotide sequences of genes because nucleotides in DNA specify a complimentary sequence in RNA, which specifies the amino acid sequence. Amino acid sequences determine the 3D structures of proteins. An alteration in the amino acid sequence can produce disease and abnormal function. All of the different ways
The shape of the protein chains that produce the building blocks and other structures used in life is mostly determined by weak chemical bonds that are easily broken and remade. These chains can shorten, lengthen, and change shape in response to the input or withdrawal of energy. The changes in the chains alter the shape of the protein and can also alter its function or cause it to become either active or inactive. The ATP molecule can bond to one part of a... ... middle of paper ... ...
n.d. - n.d. Peptides and Proteins. Proteins. Retrieved July 25, 2008, from http://www.cd http://www.cem.msu.edu/reusch/VirtualText/protein2.htm Ophardt, C. E. (2003).
The primary structure is the sequence of amino acids that make up a polypeptide chain. 20 different amino acids are found in proteins. The exact order of the amino acids in a specific protein is the primary sequence for that protein. [IMAGE] [IMAGE]Protein secondary structure refers to regular, repeated patterns of folding of the protein backbone. The two most common folding patterns are the alpha helix and the beta sheet.
In the subsequent essay I will discuss and explain the relative function of the Prion protein. The Prion protein, also known as PrPC, ‘’is a membrane-anchored protein with two N-glycosylation sites and, although it is highly expressed in the nervous tissues, its physiological functions have yet to be well established’’ (Coordination Chemistry Reviews). PrPC/PrP is found in healthy brains in this form, and consists of 250 Amino Acids, yet after a simple misfolding in the secondary structure; this can alienate the PrP and forms PrPsc, which is the abnormal form of the Prion protein. The infectious agent PrPsc causes neuropathological changes in the brain, and instantly places the individual under the category of someone with the prion disease. PrPsc forms insoluble fibres and thus cannot be studied well using Nuclear Mass Resonance (NMR), and it is also more resistant to protease digestion. Furthermore, ‘’ The transmissible spongiform encephalopathies (TSEs) arise from conversion of the membrane-bound prion protein from PrPC to PrPSc, the latter being the scrapie form. Examples of the TSEs include mad cow disease, chronic wasting disease in deer and elk, scrapie in goats and sheep, and kuru and Creutzfeldt-Jakob disease in humans’’ (http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2904554/. 2014). The following diagram shows the conversion from PrPc to PrPsc:
Proteins are one of the main building blocks of the body. They are required for the structure, function, and regulation of the body’s tissues and organs. Even smaller units create proteins; these are called amino acids. There are twenty different types of amino acids, and all twenty are configured in many different chains and sequences, producing differing protein structures and functions. An enzyme is a specialized protein that participates in chemical reactions where they serve as catalysts to speed up said reactions, or reduce the energy of activation, noted as Ea (Mader & Windelspecht).
Coenzyme Q10 or CoQ10 is chemical compound. The human body makes its own Coenzyme Q10. However, as a person grows old, the levels decrease. Then again, the Coenzyme Q10 levels go down because of illnesses. Some prescribed drugs could deteriorate the levels too. A poor diet is another way to decline the amounts in the body. So, eating whole grains, liver and oily fish could help a lot.
Protein have connection with amino acid to help in functions of: skin, muscle, hair and bones
Prion proteins are small infectious particles that are formed by the miss-folding of the protein structure. It is believed the miss-folding of such proteins has been the cause of disease such as Bovine spongiform encephalopathy in cows and Creutzfeldt-Jakob disease in humans. The prion proteins that are known to mankind so far suggest that they affect the brain of the affected individual. “A study1 in the British Medical Journal reveals that 1 in 2,000 people in the United Kingdom might harbour the infectious prion protein that causes variant Creutzfeldt–Jakob disease (vCJD).”(Callaway, 2013). The study therefore shows that a high number of people are at risk and this is a cause for concern as the prion protein which is miss-folded prompts normal proteins present in the brain, to alter their structure so they also become miss folded. The miss folded structure is understood to be very stable and as levels of the protein build up within the infected tissue this results in destruction and eventually death of the cell. The prion protein, PrP is thought to be the cause of all mammalian prion diseases but the structure of the protein is yet to be discovered. The normal cellular form of the prion protein is PrPc, whereas the miss folded scrapie form is PrPSc. PrPc is constructed from 209 amino acids and one disulphide bond and are found on cell membranes. “Several topological forms exist; one cell surface form anchored via glycolipid and two transmembrane forms.”(Hedge et al, 1998). The miss folded form, PrPSc has more Beta sheets however the normal form PrPc has Alpha structure present. “Fourier-transform infrared (FTIR) spectroscopy demonstrated that PrPC has a high alpha-helix content (42%) and no beta-sheet (3%), findings that were c...
Due to the nature of amino acids, a titration curve can be employed to identify
In total, there are around 20 amino acids that the human body uses to build proteins.
Each protein is a large complex molecule; these molecules are made up of. of a string of amino acids. There are 20 different amino acids that occur naturally to form proteins and they all have the same basic structure. The. The 20 amino acids the body needs can be linked in.
The primary structure of a protein is its specific amino acid sequence. In connexin 26 in particular the amino acid sequence is: (MDWGTLQTILGGVNKHSTSIGKIWLTVLFIFRIMILVVAAKEVWGDEQADFVCNTLQPGCKNVCYDHYFPISHIRLWALQLIFVSTPALLVAMHVAYRRHEKKRKFIKGEIKSEFKDIEEIKTQKVRIEGSLWWTYTSSIFFRVIFEAAFMYVFYVMYDGFSMQRLVKCNAWPCPNTVDCFVSRPTEKTVFTVFMIAVSGICILLNVTELCYLLIRYCSGKSKKPV). Cx26 also contains the N-terminus, a free α-amino group ending of the amino acid chain sequence rather than with free carboxyl group.
The covalent structure of a protein is composed of hundreds of individual bonds. Because free rotation is possible around a good portion of these bonds, there are a very high number of possible conformations the protein can assume. However, each protein is responsible for a particular chemical or structural function, signifying that each one has a distinctive three-dimensional configuration. By the early 1900’s, numerous proteins had been crystallized. Because the ordered collection of molecules in a crystal can only form if all of the molecular units are the same, the discovery that proteins could be crystallized proved that even large proteins have distinct chemical structures. This deduction completely transformed the understanding of proteins and their respective functions. It is important to investigate how a series of amino acids in a polypeptide chain is translated into a three-dimensional protein structure. There are five general topics related to this process: the structure of a protein is determined by its amino acid sequence, the role of a protein is dependent on its unique structure, an isolated protein typically exists in a small number of stable forms, non-covalent interactions are the most important stabilizing forces in a protein structure, and there are structural patterns that aid in explaining and understanding protein architecture.
Protein domains occur in large polypeptides, (proteins that have more than 200 residues). These proteins have two or more globular clusters which in turn have domains composed of 100-200 amino acids. Thus many domains are structurally independent units that have the characteristics of small globular proteins.
Protein is one of the many things that can be seen on a nutrition label. “A protein is a linear sequence of amino acids linked together by peptide bonds…” (Food Proteins p.1). Amino acids make up a protein because they are connected by the peptide bonds. There are charged and uncharged amino acids as well as hydrophobic and hydrophilic amino acids. A charged amino acid is an amino acid “that can carry a charge depending on the pH” and an uncharged amino acid just doesn’t have a charge (Food Proteins p.1). A proteins structure can also be changed or denaturalized. “The native structure of a protein is energetic minimum under physiological protein. Any change in conformation away from this shape will represent an energy cost” (Food Proteins p.5). Proteins that are apart of our food and nutrition labels have the ability to be changed but energy needs to be used in order for the denaturalization of the protein to occur. There is a process known as the Udy Dye Binding Method that is used to analyze proteins. “In this procedure, ground grain is shaken with an orange dye solution. This acid dye forms an insoluble dye-protein complex with the basic amino acid building blocks of protein” (McDonald p.3). The dye used in this method is acidic and makes a protein that cannot be dissolved and has the building blocks of proteins still within it called amino