Lab essay # 5
There are several different heart problems that show up as an abnormal EKG reading. For example, a heart block can occur when there is a delay in the signals coming from the SA node, AV node, or the Purkinje fibers. However, clinically the term heart block is used to refer to an AV block. This delays or completely stops communication between the atria and the ventricles. AV block is shown on the EKG as a delayed or prolonged PR interval. The P wave represents the activity in the atria, and the QRS complex represents ventricular activity. This is why the PR interval shows the signal delay from the AV node. There are three degrees of severity, and if the delay is greater than .2 seconds it is classified as first degree. Second degree is classified by several regularly spaced P waves before each QRS complex. Third degree can be shown by P waves that have no spacing relationship to the QRS complex. Another type of blockage is bundle branch block. This is caused by a blockage in the bundle of His, creating a delay in the electrical signals traveling down the bundle branches to reach the ventricles. This results in a slowed heart beat, or brachycardia. On an EKG reading this is shown as a prolonged QRS complex. A normal QRS is about .8-.12 seconds, and anything longer is considered bundle branch block. Another type of abnormal EKG reading is atrial fibrillation, when the atria contracts very quickly. On the EKG this is shown by no clear P waves, only many small fibrillating waves, and no PR interval to measure. This results in a rapid and irregular heartbeat. On the other hand, ventricular fibrillation is much more serious and can cause sudden death if not treated by electrical defibrillation.
In this lab, I took two recordings of my heart using an electrocardiogram. An electrocardiogram, EKG pg. 628 Y and pg. 688 D, is a recording of the heart's electrical impulses, action potentials, going through the heart. The different phases of the EKG are referred to as waves; the P wave, QRS Complex, and the T wave. These waves each signify the different things that are occurring in the heart. For example, the P wave occurs when the sinoatrial (SA) node, aka the pacemaker, fires an action potential. This causes the atria, which is currently full of blood, to depolarize and to contract, aka atrial systole. The signal travels from the SA node to the atrioventricular (AV) node during the P-Q segment of the EKG. The AV node purposefully delays
Cardiovascular Activity And How it Influences the body. Introduction: Cardiovascular fitness is a form of aerobic fitness (Neporent and Egan 1997). There are many different ways of evaluating the amount of oxygen used during cardiovascular fitness and one the methods involved is called VO2 Max. VO2 Max is the maximum amount of oxygen that the body can hold.
In this article, it tells how an EKG scan is on grid paper and each small block, which is one millimeter (mm) long, represents 0.04 seconds and each larger box, which is five millimeters long, represents 0.2 seconds. On a EKG scan, the voltage of the heart is measured in millivolts (mV) along the y-axis. On the scan grid, ten millimeters is equal to one millivolt. According to this source, in order to calculate the beats per minute (BPM), one divides the number of number of large boxes between each heart beat (QRS wave) in 300 small boxes. However, that used for a more consistent and steady heart rate. For a more varied and irregular rhythm, one has to count the number of QRS waves in six seconds and then multiply that number by ten. For an example, if there are eight QRS waves, then the estimated heart rate would be 80
Two heart sounds are normally heard through a stethoscope on the chest wall, "lab" "dap". The first sound can be described as soft, but resonant, and longer then the second one. This sound is associated with the closure of AV valves (atrioventricular valves) at the beginning of systole. The second sound is louder and sharp. It is associated with closure of the pulmonary and aortic valves (semilunar valves) at the beginning of diastole. There is a pause between the each set of sounds. It is a period of total heat relaxation called quiescent period.
Heart rate variability (HRV) reflects the variations in the intervals between heart beats (R waves) over time. The time between two consecutive R waves is termed the R-R interval; it is measured in milliseconds, and is controlled by the autonomic nervous system 1. HRV is a non-invasive method for interpreting autonomic nervous system modulation and provides information relating to each branch of the autonomic nervous system 2. Analysis of the beat to beat variability provides an insight into the relative contributions of the sympathetic and parasympathetic components of the autonomic nervous system’s control of the heart 34. In healthy individuals it is now widely agreed that under normal resting conditions, a high HRV is an indicator that the parasympathetic pathway is dominant over the sympathetic pathway. Consequentially, a large number of various disease states for example, cardiovascular disease have been linked to a low HRV reflecting increased sympathetic activity at rest 5. Studies have reported that regular practice of physical activity improves ...
Cardiac dysrhythmias come in different degrees of severity. There are heart conditions that you are able to live with and manage on a daily basis and those that require immediate attention. Atrial Fibrillation is one of the more frequently seen types of dysrhythmias (NIH, 2011). The best way to diagnosis a heart condition is by reading a cardiac strip (Ignatavicius &Workman, 2013). Cardiac strips play an chief part in the nursing world allowing the nurse and other trained medical professionals to interpret what the heart is doing. In a normal strip, one can clearly identify a P wave before every QRS complex, which is then followed by a T wave; in Atrial Fibrillation, the Sinoatrial node fires irregularly causing there to be no clear P wave and an irregular QRS complex (Ignatavicius & Workman, 2013). Basically, it means that the atria, the upper chambers of the heart, are contracting too quickly and no clear P wave is identified because of this ‘fibrillation’ (Ignatavicius & Workman, 2013).
An electrocardiogram (ECG) is one of the primary assessments concluded on patients who are believed to be suffering from cardiac complications. It involves a series of leads attached to the patient which measure the electrical activity of the heart and can be used to detect abnormalities in the heart function. The ECG is virtually always permanently abnormal after an acute myocardial infarction (Julian, Cowan & Mclenachan, 2005). Julies ECG showed an ST segment elevation which is the earliest indication that a myocardial infarction had in fact taken place. The Resuscitation Council (2006) recommends that clinical staff use a systematic approach when assessing and treating an acutely ill patient. Therefore the ABCDE framework would be used to assess Julie. This stands for airways, breathing, circulation, disability and elimination. On admission to A&E staff introduced themselves to Julie and asked her a series of questions about what had happened to which she responded. As she was able to communicate effectively this indicates that her airways are patent. Julie looked extremely pale and short of breath and frequently complained about a feeling of heaviness which radiated from her chest to her left arm. The nurses sat Julie in an upright in order to assess her breathing. The rate of respiration will vary with age and gender. For a healthy adult, respiratory rate of 12-18 breaths per minute is considered to be normal (Blows, 2001). High rates, and especially increasing rates, are markers of illness and a warning that the patient may suddenly deteriorate. Julie’s respiratory rates were recorded to be 21 breaths per minute and regular which can be described as tachypnoea. Julies chest wall appeared to expand equally and symmetrical on each side with each breath taken. Julies SP02 levels which are an estimation of oxygen
The study of cardio physiology was broken up into five distinct parts all centering on the cardiovascular system. The first lab was utilization of the electrocardiogram (ECG). This studied the electrical activities of the heart by placing electrodes on different parts of the skin. This results in a graph on calibrated paper of these activities. These graphs are useful in the diagnosis of heart disease and heart abnormalities. Alongside natural heart abnormalities are those induced by chemical substances. The electrocardiogram is useful in showing how these chemicals adjust the electrical impulses that it induces.
National Instrumentation Data Acquisition system is used to drive Cameras. NI DAQ controls cameras via fire wire. And it mediates between the Software used in the computer to process the video and extract PPG and calculate heart rate.
State: The cardiac cycle is composed of five stages which each trigger the relaxation or contraction of the atria or ventricles and direction of blood flow.
The purpose of this experiment was to gather data on how the amount of time spent active impacts the speed of heart rate in beats per minute. The hypothesis stated that if the amount of time active is lengthened then the speed of the heart rate is expected to rise because when one is active, the cells of the body are using the oxygen quickly. The heart then needs to speed up in order to maintain homeostasis by rapidly providing oxygen to the working cells. The hypothesis is accepted because the data collected supports the initial prediction. There is a relationship between the amount of time spent active and the speed of heart rate: as the amount of time spent active rose, the data displayed that the speed that the heart was beating at had also increased. This relationship is visible in the data since the average resting heart rate was 79 beats per minutes, while the results show that the average heart rate after taking part in 30 seconds of activity had risen to 165 beats per minute, which is a significantly larger amount of beats per minute compared to the resting heart rate. Furthermore, the average heart rates after 10 and 20 seconds of activity were 124 and 152 beats per minute, and both of which are higher than the original average resting heartbeat of 79.
Bradycardia can be very serious. Some of the symptoms are loss of consciousness, heart failure, or death. Slow heart rates are caused by heart block. The hearts natural pace-maker fails to be conducted to the ventricles, the hearts main pumping chambers.
AIM: - the aim of this experiment is to find out what the effects of exercise are on the heart rate. And to record these results in various formats. VARIABLES: - * Type of exercise * Duration of exercise * Intensity of exercise * Stage of respiration
The heart beats when electrical signals move through it. Ventricular fibrillation is a condition in which the heart's electrical activity becomes disordered. When this happens, the heart's lower (pumping) chambers contract in a rapid, unsynchronized way. (The ventricles "flutter" rather than beat.) The heart pumps little or no blood therefore the probability of death is high.
This reflection of vital signs will go into discussion about the strengths and weaknesses of each vital sign and the importance of each of them. Vital signs should be assessed many different times such as on admission to a health care facility, before and after something substantial has happened to the patient such as surgery and so forth (ref inter). I learned to assess blood pressure (BP), pulse (P), temperature (T) and respiration (R) and I will reflect and discuss which aspects were more difficult and ways to improve on them. While pulse, respiration and temperature were fairly easy to become skilled at, it was blood pressure which was a bit more difficult to understand.