Wait a second!
More handpicked essays just for you.
More handpicked essays just for you.
Essay Functioning of heart cardiac cycle
Essay Functioning of heart cardiac cycle
Don’t take our word for it - see why 10 million students trust us with their essay needs.
State: The cardiac cycle is composed of five stages which each trigger the relaxation or contraction of the atria or ventricles and direction of blood flow.
Elaborate: The cardiac cycle of the heart is divided into diastole and systole stages. Diastole refers to the period of relaxation experienced by the atria and ventricles. Systole is the contraction of the atria and ventricles. The pattern of blood flow starts in the left atrium to right atrium then into the left ventricle and right ventricle. During its course, blood flows through the mitral and tricuspid valves. Simultaneously, the right atrium is granted blood from the veins through the superior and inferior vena cava. The job of the superior vena cava is to transport de-oxygenated blood to
When your heart beats, the first beat represents the AV valves closing to prevent the backflow of blood into the atrium. The second beat is the semilunar valves opening to allow blood into the aorta or pulmonary trunk. The cardiac cycle is composed of five stages. These stages are atrial systole, early ventricular systole, late ventricular systole, early ventricular diastole, and late ventricular diastole. In order for atrial systole to occur, the blood that has been flowing between the atrium and ventricle via the opened atrioventricular valves must be deposited into the ventricles. The SA node is responsible for the contraction of the atrial myocardium. Once the atrium contracts, blood cannot flow back into or enter the atria because the openings of the great veins has been narrowed by pressure. The ventricles are now filled with blood accomplishing end-diastolic volume which is another term for how much blood your ventricles can contain while your body is at rest. The next phase is early ventricular systole. Now that all the blood is in your ventricles, it must continue onward to the
In this lab, I took two recordings of my heart using an electrocardiogram. An electrocardiogram, EKG pg. 628 Y and pg. 688 D, is a recording of the heart's electrical impulses, action potentials, going through the heart. The different phases of the EKG are referred to as waves; the P wave, QRS Complex, and the T wave. These waves each signify the different things that are occurring in the heart. For example, the P wave occurs when the sinoatrial (SA) node, aka the pacemaker, fires an action potential. This causes the atria, which is currently full of blood, to depolarize and to contract, aka atrial systole. The signal travels from the SA node to the atrioventricular (AV) node during the P-Q segment of the EKG. The AV node purposefully delays
1.2 & 1.3 Explain The Cardiac Cycle And Describe How The Heart Rate Is Modified According To The Needs Of The Body
In this figure, SN = sinus node; AVN = AV node; RA = right atrium; LA
O’Rourke [13] describes the pulse wave shape as: “A sharp upstroke, straight rise to the first systolic peak, and near-exponential pressure decay in the late diastole.” Arteries are compliant structures, which buffer the pressure change resulting from the pumping action of the heart. The arteries function by expanding and absorbing energy during systole (contraction of the cardiac muscle) and release this energy by recoiling during diastole (relaxation of the cardiac muscle). This function produces a smooth pulse wave comprising a sharp rise and gradual decay of the wave as seen in Figure 5. As the arteries age, they become less compliant and do not buffer the pressure change to the full extent. This results in an increase in systolic pressure and a decrease in diastolic pressure.
Two heart sounds are normally heard through a stethoscope on the chest wall, "lab" "dap". The first sound can be described as soft, but resonant, and longer then the second one. This sound is associated with the closure of AV valves (atrioventricular valves) at the beginning of systole. The second sound is louder and sharp. It is associated with closure of the pulmonary and aortic valves (semilunar valves) at the beginning of diastole. There is a pause between the each set of sounds. It is a period of total heat relaxation called quiescent period.
The cardiovascular system is divided into two systems a pulmonary and a systemic. Pulmonary division- blood flows from the heart to alveolar capillaries and back to the heart. Systemic division- blood flows from heart to every capillary “except alveolar” and back to heart.
A normal heart rhythm begins at the sinoatrial node and follows the hearts conduction pathway without any problems. Typically the sinoatrial node fires between 60-100 times per minute (Ignatavicius & Workman, 2013). When a person has Atrial Fibrillation, the sinoatrial node releases multiple quick impulses at a rate of 350 -600 times per minute. When this happens, the ventricles respond by beating around 120- 200 beats per minute, making it tough to identify an accurate heart rate. This arrhythmia can be the result of various things. During a normal heart beat, the electrical impulse begins at the sinoatrial node and travels down the conduction pathway until the ventricles contract. Once that happe...
The heart is two sided and has four chambers and is mostly made up of muscle. The heart’s muscles are different from other muscles in the body because the heart’s muscles cannot become tired, so the muscle is always expanding and contacting. The heart usually beats between 60 and 100 beats per minute. In the right side of the heart, there is low pressure and its job is to send red blood cells. Blood enters the right heart through a chamber which is called right atrium. The right atrium is another word for entry room. Since the atrium is located above the right ventricle, a mixture of gravity and a squeeze pushes tricuspid valve into the right ventricle. The tricuspid is made up of three things that allow blood to travel from top to bottom in the heart but closes to prevent the blood from backing up in the right atrium.
Cardiovascular disease is currently the leading cause of death in the United States. It is responsible for one in four deaths every year, about 600,000 mortalities. This disease affects men and women, as well as every ethnic group. Coronary artery disease is the most common cardiovascular disease, representing approximately 400,000 deaths per year of the aforementioned 600,000 total deaths from cardiovascular diseases as a whole. In 2010 alone, coronary artery disease cost the United States $108.9 billion for health care services, medication, and lost productivity. These chilling statistics, published every year by the American Medical Association, demonstrate the immediate need for new and innovative ways to prevent, detect, and treat coronary heart disease. This paper will explore the molecular biology behind the disease while explaining the current treatments and prevention that are available today, why they work and what can be done to improve them.
The heart serves as a powerful function in the human body through two main jobs. It pumps oxygen-rich blood throughout the body and “blood vessels called coronary arteries that carry oxygenated blood straight into the heart muscle” (Katzenstein and Pinã, 2). There are four chambers and valves inside the heart that “help regulate the flow of blood as it travels through the heart’s chambers and out to the lungs and body” (Katzenstein Pinã, 2). Within the heart there is the upper chamber known as the atrium (atria) and the lower chamber known as the ventricles. “The atrium receive blood from the lu...
Just as breast cancer is killing our African American women, heart disease is also one of the major diseases killing our women. Heart disease is one of the nation’s leading causes of death in both woman and men. About 600,000 people die of heart disease in the United States (Americas heart disease burden, 2013). Some facts about heart disease are every year about 935,000 Americans have a heart attack. Of these, 610,000 are a first heart attack victim. 325,000 happen in people who have already had a heart attack. Also coronary heart disease alone costs the United States $108.9 billion each year. This total includes the cost of health care services, medications, and loss of productivity. Deaths of heart disease in the United States back in 2008 killed about 24.5% of African Americans.
Everyone knows that the heart is a vital organ and we cannot live without it. It is complex and important; therefore it is critical to know how it works. With knowledge about the heart and what is good and bad for it, one can significantly decrease the risk for diseases. Now, the heart has three layers. Endocardium is the smooth inside lining, myocardium id is the middle layer of heart muscle, and it is surrounded by a fluid filled sac called the pericardium. The heart is split into four parts; some may call it chamber or rooms. These parts are the: right atrium, the left atrium, the right ventricle, and the left ventricle. The chambers are separated by partition walls known as the septum and each has a one-way valve that prevents blood from flowing backwards.
the aortic valve, between the left ventricle and the aorta. heart_chambers.jpg Each valve has a set of "flaps" (also called leaflets or cusps). The mitral valve normally has two flaps; the others have three flaps. Dark bluish blood, low in oxygen, flows back to the heart after circulating through the body. It returns to the heart through veins and enters the right atrium.
The heart is a pump with four chambers made of their own special muscle called cardiac muscle. Its interwoven muscle fibers enable the heart to contract or squeeze together automatically (Colombo 7). It’s about the same size of a fist and weighs some where around two hundred fifty to three hundred fifty grams (Marieb 432). The size of the heart depends on a person’s height and size. The heart wall is enclosed in three layers: superficial epicardium, middle epicardium, and deep epicardium. It is then enclosed in a double-walled sac called the Pericardium. The terms Systole and Diastole refer respectively and literally to the contraction and relaxation periods of heart activity (Marieb 432). While the doctor is taking a patient’s blood pressure, he listens for the contractions and relaxations of the heart. He also listens for them to make sure that they are going in a single rhythm, to make sure that there are no arrhythmias or complications. The heart muscle does not depend on the nervous system. If the nervous s...
The heart beats when electrical signals move through it. Ventricular fibrillation is a condition in which the heart's electrical activity becomes disordered. When this happens, the heart's lower (pumping) chambers contract in a rapid, unsynchronized way. (The ventricles "flutter" rather than beat.) The heart pumps little or no blood therefore the probability of death is high.