Teachers should know and understand the relationship between addition and multiplication because this understanding will translate well into teaching students to understand the concept of multiplication. The relationship of these two operations is very close so it is especially important to ensure each student fully comprehends the rules of addition before proceeding to multiplication. Addition is the process of combining a number of individual items together to form a new total. Multiplication, however, is the process of using repeated addition and combining the total number of items that make up equal-sized groups. This means that in multiplication, groups are created to represent the numbers being multiplied, and then the groups are added together to produce a total.
Relating addition to multiplication is relatively simple. In fact, instruction on multiplication often begins in kindergarten as children develop ideas about numbers, addition, and groups. These experiences provide the basis of understanding for multiplication. Because addition is a precursor for multiplication, a student must be able to count items in groups and count the number of groups, which will then help them to be able to multiply them. Through the addition principles of skip counting, repeated addition, grouping, and number lines students can attain a deeper, broader understanding of multiplication. When students finally understand that multiplication and addition function under many of the same rules or properties, they will understand that addition and multiplication work under the same conditions.
The strategy called skip counting will benefit students who know how to count by two's, five's or ten's. Drill exercises using skip counting...
... middle of paper ...
... are computing using the distributive property will get them using the language of math, help them to see where they are making errors, and help them by having a peer agree or disagree with their answer. If the pair has different answers, they can re-work the problem using the distributive property to see who is correct. Sharing answers with the rest of the class will reinforce the correct procedure, thus reinforcing the property.
Teaching multiplication can be made less confusing for the students when the relationship between addition and multiplication is communicated and explained. Building upon prior knowledge of the use of addition strategies and incorporating the properties of multiplication, the students can reach a depth of knowledge about multiplication that will make it possible for them to discover the correct product and reinforce both concepts.
Van de Walle, J., , F., Karp, K. S., & Bay-Williams, J. M. (2010). Elementary and middle school mathematics, teaching developmentally. (Seventh ed.). New York, NY: Allyn & Bacon.
, the value of teaching subitizing skills in the classroom is clear. This ability provides a visual tool to young students as they develop a basic understanding of numbers and one to one correspondence, and it establishes a firm foundation for the future skills of addition and subtraction facts. Possessing the knowledge of how and when students develop the cognitive understanding of this concept can drive a teachers instruction so that the students find greater success in the lesson. Knowing that comprehension of number conservation does not occur until age 5 or 6 will definitely have an effect upon early teaching of number sense.
“Class,” I announced, “today I will teach you a simpler method to find the greatest common factor and the least common multiple of a set of numbers.” In fifth grade, my teacher asked if anyone had any other methods to find the greatest common factor of two numbers. I volunteered, and soon the entire class, and teacher, was using my method to solve problems. Teaching my class as a fifth grader inspired me to teach others how important math and science is. These days, I enjoy helping my friends with their math homework, knowing that I am helping them understand the concept and improve their grades.
Math is a complex subject to understand. I want to provide students with as much peer discussion and hands-on activities time. This will allow students to problem solve, explore different outcomes and learn from each other. Learning the vocabulary word will help students explain their concerns, unclarified issues and help them to
Children can enhance their understanding of difficult addition and subtraction problems, when they learn to recognize how the combination of two or more numbers demonstrate a total (Fuson, Clements, & Beckmann, 2011). As students advance from Kindergarten through second grade they learn various strategies to solve addition and subtraction problems. The methods can be summarize into three distinctive categories called count all, count on, and recompose (Fuson, Clements, & Beckmann, 2011). The strategies vary faintly in simplicity and application. I will demonstrate how students can apply the count all, count on, and recompose strategies to solve addition and subtraction problems involving many levels of difficulty.
Countless time teachers encounter students that struggle with mathematical concepts trough elementary grades. Often, the struggle stems from the inability to comprehend the mathematical concept of place value. “Understanding our place value system is an essential foundation for all computations with whole numbers” (Burns, 2010, p. 20). Students that recognize the composition of the numbers have more flexibility in mathematical computation. “Not only does the base-ten system allow us to express arbitrarily large numbers and arbitrarily small numbers, but it also enables us to quickly compare numbers and assess the ballpark size of a number” (Beckmann, 2014a, p. 1). Addressing student misconceptions should be part of every lesson. If a student perpetuates place value misconceptions they will not be able to fully recognize and explain other mathematical ideas. In this paper, I will analyze some misconceptions relating place value and suggest some strategies to help students understand the concept of place value.
In contrast, students with dyscalculia often use a count all method when working with math problems. As stated in Socioeconomic Variation, Number Competence, and Mathematics Learning Difficulties in Young Children “Young children who develop mathematical learning difficulties rely on the more basic “count all” finger strategies for extended periods…thus make frequent counting errors while adding and subtracting” (Jordan & Levine 2009, pp.63). Students with dyscalculia approach problems in a similar fashion and do not use effective strategies when working with numbers. As a result, they tend to take long periods of time to figure a problem and make mistakes when counting. On the other hand, students who use effective strategies, such as grouping when doing addition or subtraction are more likely to arrive at the correct
Now I’d like to downgrade and put things in an elementary perspective. If it is 3 o'clock and we add 5 hours to the time that will put us at 8 o'clock, so we could write 3 + 5 = 8. But if it is 11 o'clock and we add 5 hours the time will be 4 o'clock, so we should write 11 + 5 = 4. Now everyone knows that 11 + 5 =16, but there is no 16 on the clock (unless you're on military time). Every time we go past 12 on the clock we start counting the hours at 1 again. If we add numbers the way we add hours on the clock, we say that we are doing clock arithmetic. So, in clock arithmetic 8 + 6 = 2, because 6 hours after 8 o'clock is 2 o'clock.
Breaking down tasks into smaller, easier steps can be an effective way to teach a classroom of students with a variety of skills and needs. In breaking down the learning process, it allows students to learn at equal pace. This technique can also act as a helpful method for the teacher to analyze and understand the varying needs of the students in the classroom. When teaching or introducing a new math lesson, a teacher might first use the most basic aspects of the lesson to begin the teaching process (i.e. teach stu...
Skemp, R (2002). Mathematics in the Primary School. 2nd ed. London: Taylor and Francis .
The early acquisition of mathematical concepts in children is essential for their overall cognitive development. It is imperative that educators focus on theoretical views to guide and plan the development of mathematical concepts in the early years. Early math concepts involve learning skills such as matching, ordering, sorting, classifying, sequencing and patterning. The early environment offers the foundation for children to develop an interest in numbers and their concepts. Children develop and construct their own meaning of numbers through active learning rather than teacher directed instruction.
Mathematics teachers teach their students a wide range of content strands – geometry, algebra, statistics, and trigonometry – while also teaching their students mathematical skills – logical thinking, formal process, numerical reasoning, and problem solving. In teaching my students, I need to aspire to Skemp’s (1976) description of a “relational understanding” of mathematics (p. 4). Skemp describes two types of understanding: relational understanding and instrumental understanding. In an instrumental understanding, students know how to follow steps and sequential procedures without a true understanding of the mathematical reasons for the processe...
The prominence of numeracy is extremely evident in daily life and as teachers it is important to provide quality assistance to students with regards to the development of a child's numeracy skills. High-level numeracy ability does not exclusively signify an extensive view of complex mathematics, its meaning refers to using constructive mathematical ideas to “...make sense of the world.” (NSW Government, 2011). A high-level of numeracy is evident in our abilities to effectively draw upon mathematical ideas and critically evaluate it's use in real-life situations, such as finances, time management, building construction and food preparation, just to name a few (NSW Government, 2011). Effective teachings of numeracy in the 21st century has become a major topic of debate in recent years. The debate usually streams from parents desires for their child to succeed in school and not fall behind. Regardless of socio-economic background, parents want success for their children to prepare them for life in society and work (Groundwater-Smith, 2009). A student who only presents an extremely basic understanding of numeracy, such as small number counting and limited spatial and time awareness, is at risk of falling behind in the increasingly competitive and technologically focused job market of the 21st Century (Huetinck & Munshin, 2008). In the last decade, the Australian curriculum has witness an influx of new digital tools to assist mathematical teaching and learning. The common calculator, which is becoming increasing cheap and readily available, and its usage within the primary school curriculum is often put at the forefront of this debate (Groves, 1994). The argument against the usage of the calculator suggests that it makes students lazy ...
Throughout out this semester, I’ve had the opportunity to gain a better understanding when it comes to teaching Mathematics in the classroom. During the course of this semester, EDEL 440 has showed my classmates and myself the appropriate ways mathematics can be taught in an elementary classroom and how the students in the classroom may retrieve the information. During my years of school, mathematics has been my favorite subject. Over the years, math has challenged me on so many different levels. Having the opportunity to see the appropriate ways math should be taught in an Elementary classroom has giving me a
Allowing children to learn mathematics through all facets of development – physical, intellectual, emotional and social - will maximize their exposure to mathematical concepts and problem solving. Additionally, mathematics needs to be integrated into the entire curriculum in a coherent manner that takes into account the relationships and sequences of major mathematical ideas. The curriculum should be developmentally appropriate to the