The Pros And Cons Of Genome Editing

1271 Words3 Pages

“UC Berkeley researchers have made a major improvement in CRISPR-Cas9 technology that achieves an unprecedented success rate of 60 percent when replacing a short stretch of DNA with another”(Antonio Carusillo, PhD Candidate in Genetic Engineering (Marie Curie) at University of Freiburg (2018-present). This statistic shows that there is more of a chance to success but there is a chance to fail 40 percent but overall it will succeed which is why people are lenient about will it actually work or not, but as technology get better so will treatments to cure hard to pinpoint disease such as cancer, zika, or leukemia. Genome editing (also called gene editing) is a group of technologies that give scientists the ability to change an organism's DNA. …show more content…

Most of the changes introduced with genome editing are limited to somatic cells, which are cells other than egg and sperm cells. These changes affect only certain tissues and are not passed from one generation to the next. However, changes made to genes in egg or sperm cells (germline cells) or in the genes of an embryo could be passed to future generations. Germline cell and embryo genome editing bring up a number of ethical challenges, including whether it would be permissible to use this technology to enhance normal human traits (such as height or intelligence). As the technology continues to get better CRISPR could be used to correct the faulty DNA that's responsible for genetic diseases like cystic fibrosis, sickle cell anemia, hemophilia and perhaps muscular dystrophy. As long as scientists can identify which mutation causes these diseases, they could, in theory, use CRISPR to find these genes, break them, and replace them with healthy …show more content…

Their CRISPR/Cas9 system involved CRISPR, a Cas protein called Cas9, and hybrid RNA that could be programmed to identify, cut, and even replace any gene sequence. By the start of 2013, research applying CRISPR/Cas9 to genetic engineering was underway.The CRISPR system is not completely reliable. It doesn't work all the time, and it occasionally causes changes in genes that weren't intended As mentioned previously, Cas9 can only recognise genetic sequences of around 20 bases long, meaning that longer sequences cannot be targeted. More significantly, the enzyme still sometimes cuts in the wrong place. Figuring out why this is will be a significant breakthrough in itself – fixing it will be even bigger. Then, of course, there’s the issue that CRISPR didn’t work terribly well in human embryos. This saying that Scientists need to discover what went wrong there, and what the difference is between the success in single cells and the more patchy results with embryos. Also that

Open Document