Wait a second!
More handpicked essays just for you.
More handpicked essays just for you.
Anatomy th e muscular system
Anatomy th e muscular system
Anatomy th e muscular system
Don’t take our word for it - see why 10 million students trust us with their essay needs.
Recommended: Anatomy th e muscular system
The muscular system is an organ system consisting of skeletal, smooth and cardiac muscles. It permits movement of the body, maintains posture, and circulates blood throughout the body. The muscular system in vertebrates is controlled through the nervous system, although some muscles can be completely autonomous. Together with the skeletal system it forms the musculoskeletal system, which is responsible for movement of the human body.
Muscles
There are three distinct types of muscles: skeletal muscles, cardiac or heart muscles, and smooth muscles. Muscles provide strength, balance, posture, movement and heat for the body to keep warm.
Upon stimulation by an action potential, skeletal muscles perform a coordinated contraction by shortening each sarcomere. The best proposed model for understanding contraction is the sliding filament model of muscle contraction. Actin and myosin fibers overlap in a contractile motion towards each other. Myosin filaments have club-shaped heads that project toward the actin filaments.
Larger structures along the myosin filament called myosin heads a...
In the beginning phases of muscle contraction, a “cocked” motor neuron in the spinal cord is activated to form a neuromuscular junction with each muscle fiber when it begins branching out to each cell. An action potential is passed down the nerve, releasing calcium, which simultaneously stimulates the release of acetylcholine onto the sarcolemma. As long as calcium and ATP are present, the contraction will continue. Acetylcholine then initiates the resting potential’s change under the motor end plate, stimulates the action potential, and passes along both directions on the surface of the muscle fiber. Sodium ions rush into the cell through the open channels to depolarize the sarcolemma. The depolarization spreads. The potassium channels open while the sodium channels close off, which repolarizes the entire cell. The action potential is dispersed throughout the cell through the transverse tubule, causing the sarcoplasmic reticulum to release
...st the sacrolemma will depolarized, thus activation potentials along the T-tubules. This signal will transmit from along the T-tubules to sarcroplasmic reticulum's terminal sacs. Next, sarcoplasmic reticulum will release the calcium into the sarcroplasm leading to the next second event called contraction. The released calcium ions will now bind to troponin. This will cause the inhibition of actin and mysoin interaction to be released. The crossbridge of myosin filaments that are attached to the actin filaments, thus causing tension to be exerted and the muscles will shorten by sliding filament mechanism. The last event is called Relaxation. After the sliding of the filament mechanism, the calcium will be slowly pumped back into the scaroplasmic reticulum. The crossbridges will detach from the filaments. The inhibition of the actin and myosin will go back to normal.
The three functions of the skeletal system are to support, to allow movement, and to protect. The skeleton is the framework of the body and also cradles its soft organs, with it the body would be just a jelly mass it wouldn’t have no definite shape and would just collapse. It supports the softer tissues and provides points of attachment for more skeletal muscles to hold all of the parts of the body upright. For example, the bones of the legs as pillars to support the body trunk we stand up. It also supports the body against the pull of gravity. The skeletal allows movement. The skeletal muscle attached to the bones by tendons and uses the bones as a simple mechanical lever system to move the body and its parts. All together with the muscles
Within skeletal muscle there are extremely small structures that form the muscle and allow contractions and movement to occur (epimysium, perimysium, endomysium, fascicles, fiber, sarcomere, sarcoplasmic reticulum and t tubules). These structures all play a role in protecting, connecting and transporting substances throughout the muscle fibers. They are also the main contributors to movement.
The skeletal system assists the muscular system to provide movement for the body. Certain muscles that are attached to bones contract and pull on the bones resulting in movement.
Cardiac muscle is a type of involuntary muscle found only in the walls of the heart, specifically the myocardium. Cardiac muscles contract automatically to tighten the walls of the heart in a rhythmic fashion. The heart beats nonstop about 100,000 times each day. Smooth muscle is a type of involuntary muscle found within the walls of blood vessels such as in small arteries and veins. Smooth muscle is also found in the urinary bladder, uterus, male and female reproductive tracts, gastrointestinal tract, and the respiratory tract. Skeletal muscles are voluntarily controlled and are attached to bones by tendons. Skeletal muscles also vary considerably in size and shape. They range from extremely tiny strands such as in the muscle of the middle ear as large like in the muscles of the thigh. The three individual muscle types also serve five main functions. The five basic functions are movement, organ protection, pumping blood, aiding digestion, and ensuring blood flow.
The musculoskeletal system is made up of bones, muscles, cartilage, tendons, ligaments, joints and other connective tissue that supports and binds tissue and other organs together. Each muscle is a discreet organ constructed of skeletal muscle tissue, blood vessels, and nerves. Did you know there are roughly 600 organs that make up the muscular system? They include the cardiac muscles, smooth muscles, and skeletal muscles to name a few. The heart is the cardiac muscle. Smooth muscle are the tissues that line blood vessels and organs, such as the stomach and intestines. The skeletal muscles, which are the most well known and familiar of the muscle organ system, helps hold the skeletal frame work together. They make up bout 40 percent of the
After the skin, there is a layer called the dermis. The dermis is a broad layer of fibrous and elastic tissue (made mostly of fibrillin, elastin, and collagen) which gives the skin its flexibility and strength. The dermis incorporates nerve endings, sweat glands and oil glands, hair follicles, and blood
The contraction of a muscle is a complex process, requiring several molecules including ATP and Cl-, and certain regulatory mechanisms [1]. Myosin is motor protein that converts chemical bond energy from ATP into mechanical energy of motion [1]. Muscle contraction is also regulated by the amount of action potentials that the muscle receives [2]. A greater number of actions potentials are required to elicit more muscles fibers to contract thus increasing the contraction strength [2]. Studied indicate that the larger motor units, which were recruited at higher threshold forces, tended to have shorter contraction times than the smaller units [3]. The aims of the experiment were to reinforce the concept that many chemicals are required for skeletal muscle contraction to occur by using the rabbit muscle (Lepus curpaeums) [2]. In addition, the experiment was an opportunity to measure the strength of contraction and to observe the number of motor units that need to be recruited to maintain a constant force as the muscles begin to fatigue [2]. Hypothetically, the rabbit muscle fiber should contract most with ATP and salt solution; and the amount of motor units involved would increase with a decreasing level of force applied until fatigue stage is reached.
The sarcomere is found in structures called myofibrils which make up skeletal muscle fibres. Within the sarcomere there are various different proteins. One of the most significant, myosin is found in the thick filaments of the sarcomere. Although both cells contain myosin, it is important to highlight that smooth muscle cells contain a much lower percentage of myosin compared to skeletal muscle cells. Despite this, myosin filaments in smooth muscle cells bind to actin filaments in a manner similar to that in skeletal muscle cells; although there are some differences. For instance, myosin filaments in smooth muscle cells are saturated with myosin heads so that myosin can glide over bound actin filaments over longer distances, enabling smooth muscle cells to stretch further, whilst in skeleta...
The musculoskeletal system is comprised of bones, joints, cartilage, tendons, ligaments, fascia and muscles. Together these body parts work to establish a framework that is the musculoskeletal system. This framework is what gives the body its shape, form, and figure. It stabilizes the body as well as supplies the structural support. The musculoskeletal body features not only provide a framework for your body but allows your ability to create movement. These movements are monitored by the musculoskeletal components which then determine your degree of flexibility. Overall the amount of energy your body uses comes almost entirely from these musculoskeletal functions. Which makes sense because it
The musculoskeletal system can also be referred to as locomotive system. It mainly comprises of muscles, skeleton, tendons, cartilage, ligaments and joints. The musculoskeletal system supports the body, aids in movement of the body and protect the vital organs in the body.
In this paper I will clarify the relation between the integumentary system and the skeletal system. During this paper I will address how the two systems work together to maintain homeostasis and what occurs when balance is not maintained between the integumentary and skeletal system. During this paper I will explain how osteoporosis is directly linked between both the integumentary and skeletal system and ways to prevent or yield this disease.
There are three different types of muscles in the body, and the first to be talked about are skeletal muscles. The body consists of about 640 skeletal muscles and they just so happen to be the only voluntary or (controlled) muscles. Their main function is to contract and expand so that your bones are able to move. Most skeletal muscles are attached to bones or joints so that the muscle can either expand or contract to create motion. They consist of band like fibers attached and bundled together that run along the bone. These fibers are held together by connective tissue called epimysium, which also protects the muscle. Skeletal muscle is what makes the body able to walk and move, without these skeletal muscles the body could not function properly because it would have nothing to rely on for stabilization and strength. They contain what is called striated cells, which is cells that are shaped like bands and are individual, they stretch out the length of the muscle so that they are able to contract with it and these cells are also what give the muscle energy through respiration of proteins fats and glucose which is the energy supplement for all muscles. For example refer to figure 1-1 1-4 and1-5 for the cell
The human body is very complex. It is like a job. You have to do a million things in one day to make it through the day. The body uses nine systems to do all of those jobs. They all have separate functions, but some work together. Each system is also made up of organs. There are many ways to care and protect the systems from the many different problems they can have. There are also many interesting facts about each system.