The Effect of the Amount of Sodium Chloride on the Electric Current During Electrolysis
Background
When an electric current passes through sodium chloride solution,
chemical reactions take place at both cathode and anode. If one passes
through sodium chloride solution, there will be passage of ions moving
through this solution. This results in positively charged sodium ions,
which have been dissolved into the solution, moving towards the
cathode and deposited there. At the same time, negatively charged
chloride ions will be moving towards the anode and discharged at the
anode. This is called electrolysis.
Aim of experiment
My aim is to investigate the effect of the amount of sodium chloride,
i.e. concentration gradient, in the aqueous solution on the electric
current during electrolysis.
Key Factors/ variables that affect the results of the experiment
The experiment carried out aimed to monitor the current during
electrolysis when the amount of sodium chloride was changed. To ensure
a fair test, only one of the listed key variables is allowed to change
at a time with the rest of the variables are kept constant."
This will give me an accurate set of results, which, I hope, enables
me to make a decent conclusion. If we do not control the factors apart
from the concentration we are testing, you can turn around and say
that it was the other factors that had caused the difference and that
it had nothing to do with the concentration. By keeping the factors
controlled and equal, you can prove it is the concentration.
The following factors/variables must be controlled or monitored during
the experiment:
1. Temperature
2. Quantity of solution
3. Voltage
4. Size of electrodes
5. Distance between electrodes
6. Surface on the electrodes
7. Distilled water
I plan to finish the experiment in one day, so the temperature won't
change drastically and use a stop-clock to maintain the time duration
for applying voltage to 10s.
Solid A was identified to be sodium chloride, solid B was identified to be sucrose, and Solid C was identified to be corn starch. Within the Information Chart – Mystery White Solid Lab there are results that distinguishes itself from the other 4 experimental results within each test. Such as: the high conductivity and high melting point of sodium chloride, and the iodine reaction of corn starch. Solid A is an ionic compound due to its high melting point and high electrical conductivity (7), within the Information Chart – Mystery White Solid Lab there is only one ionic compound which is sodium chloride, with the test results of Solid A, it can be concluded that is a sodium chloride. Solid B was identified as sucrose due to its low electrical
Start with the hot water and first measure the temperature. Record it. 8. Then pour 40 ml into the beaker. You can measure how much water was used by looking at the meniscus.
When given a test tube of the unknown sample, four drops of 6 M HCl(aq) was first added in order to precipitate the ions into their respective chlorides, AgCl(s), Hg2Cl2(s), PbCl2(s), if present. After adding the HCl(aq) to the sample, the solution would turned milky white and a white precipitate settled to the bottom of the test tube, indicating that there was at least one of the ions initially present in the unknown solution. A large amount of HCl was not added because the AgCl(s) and PbCl2(s) would otherwise form soluble chloro complexes with the excess chloride atoms: PbCl42-(aq) and AgCl2-(aq). The solution was then centrifuged to fully separate the suspended chlorides from the liquid. An additional drop of HCl was then added to the
To conclude, the hypothesis was supported by the data obtained. The hypothesis stated, if an elodea leaf is exposed to salt water then, the leaf cells will experience plasmolysis because the cells will be in a hypertonic solution. As seen in the above data table and bar graph there was an obvious difference between the length of a cell in tap water and the length of a cell in a 10% salt solution. As seen in the row of the data table labeled difference in length between length before being introduced to the salt solution and after being introduced to the salt solution. The differences between the length of cells in tap water and salt solution are shown. In trial one there is a zero micrometer difference in cell length, in trial 2 there is a 10.116
When a positive and a negative electrode are placed in a solution containing ions, and an electric potential is applied to the electrodes, the positively charged ions move towards the negative electrode, and the negatively charged ions to the positive electrode. As a result, an electric current flows between the electrodes. The strength of the current depends on the electric potential between the electrodes and the concentration of ions in the solution. Ionization is the formation of electrically charges atoms or molecules.
The input variables are the ones that I can change in order to affect the experiment and the outcome variables are the ones I will measure to see how the input variable has affected it. Input Variables --------------- Amount of calcium carbonate Amount of hydrochloric acid Surface area of calcium carbonate Concentration of hydrochloric acid Temperature of hydrochloric acid Introduction of a catalyst Outcome variables ----------------- Amount of calcium chloride released Amount of water released Amount of carbon dioxide released Change in weight
Variables --------- During the experiments, the water will be heated using different spirit burners containing different alcohols. I will be able to change different parts of the experiment. These are the. Volume of water heated:
Two electrical wires * Stopwatch * Thermometer Method I put a piece of Elodea Canadensis (pond weed) in a test tube and covered it with water. The test tube was then placed in a beaker with a thermometer so that the water stayed the same temperature, this was then placed in a cardboard box with a bulb attached to a voltmeter by the electrical wires so that I could concentrate how much light the plant got. I varied the voltage (intensity) of the bulb and counted how many bubbles of oxygen were created at each voltage in one minute. I tested each voltage three times for accuracy for a minute each time. Results Preliminary Experiment Amount of bubbles Light intensity (lux)
Although the initial molarities were given on the chemical’s bottle, adjustments need to be made due to dilutions. In the general experiment and the heated and cooled solutions sections, the concentration of t-butyl chloride is 0.1 M molar because it was not diluted. The molarity of sodium hydroxide for these sections is calculated below.
In a 250ml beaker place 100mls of water, measure the temperature of the water and record this initial temperature onto a table. Set the timer and add one teaspoon of Ammonium Nitrate to the water, stir this continuously until the Ammonium Nitrate has dissolved. After 1 minute measure the temperature and record it, do this for a further 2 minutes (3 minutes in total). Repeat this process for a total of 10 teaspoons.
Firstly, we need to keep the chemical at a constant concentration. So, in this experiment we have chosen to keep hydrochloric acid at a constant concentration (5cm3). We could have, however, used Sodium Thiosulphate as a constant, but we had chosen to use Hydrochloric acid. Next, we must make sure that the solution is kept at a constant volume throughout the experiment. If the volume is different, then it could give different results if it was at a constant volume.
Time - The longer time can let more copper ions from the anode to the cathode if the current are the same. There are still more factors which can affect the mass deposited during electroplating. 3). Distance between two electrodes - If the distance between the two electrodes is greater, the copper ions require to travel more from the anode to the cathode.
Every living organism’s salt content is controlled by osmosis. Through osmosis, water moves across an organism’s surface and/or membrane. Osmosis usually moves from high concentration to low concentration. In this experiment we decided to add 300mL of water in 2 jars labeled a Jar A was filled with freshwater while Jar B was created into a saltwater solution. After we added a 1 piece of each of our vegetables which were (carrot, celery and raisin). After we added the vegetables we added cling wrap to each of our jars so the water doesn't evaporate and turn into water vapor. In groups we had to figure out what happens to the vegetables before and after 24 hours in the saltwater, and the freshwater. Vegetables such as carrots
Volume's Effect on a Copper Sulphate Solution We are trying to find out if the current though a copper sulphate solutions volume is increased. To find this information out I shall perform an experiment using the following equipment; · 1 power pack · 1 beaker · 2 carbon rods for anode and cathode · 1 ammeter · 1 measuring cylinder · 2 crocodile clip wirers I shall also be using 60cm3 volume of copper sulphate in my preliminary results to decide upon the concentration of copper sulphate and the voltage I shall use. The following diagrams show the step by step process in which I will do my experiment; [IMAGE] [IMAGE] [IMAGE] [IMAGE] I will take 10 readings from 10cm3 to 100cm3. I will repeat my experiment to give my experiment a fair average. I will keep the power pack the beaker the carbon rods the crocodile clips the ammeter the concentration of copper sulphate and the measuring cylinder the same each time I do the experiment this experiment.
In the experiment there are several possible ways of changing the electric current such as changing the voltage or the position of the electrodes within the electrolysis cell. However, it was found from preliminary work that the most effective way to change the current was to change the concentration of the acid solution. The preliminary work showed that the greater the concentration of the acid, the greater the current. Ohm's law states that R(resistance) =