Supernovas are extremely powerful explosions of radiation. A supernova can give off as much energy as a Sun can within its whole life. A star will release most of its material when it undergoes this type of explosion. The explosion of a supernova can also help in creating new stars.
There are two types of ways a Supernova can be triggered. The first trigger is the result of a white dwarf accumulating matter from a companion. This causes the dwarf to reach a core temperature too high to survive which in turn makes an explosion. The second trigger is when a star’s nuclear fuel is diminishing and can no longer support the release of nuclear energy. If the star’s core is large enough it will breakdown and become a supernova. Most observations of a supernova are made through spectral lines. Classification agrees with the physical classification, because large stars are made of mostly hydrogen, while white dwarf stars are plain. White dwarfs have a bare surrounding because the original star’s explosion was so great that the winds pushed the hydrogen away.
A star will blow up with the help of gravitational collapses. When a star explodes from nuclear fusion it is because so much mass has built up within its core and it cannot hold the weight. Neutrons are the only things in nature that can stop a core implosion. When a white dwarf suffers a supernova, the energy comes from the runaway fusion of carbon and oxygen in the core.
After a supernova, the core is likely to travel someplace else within space. When the core is less size than about 5 solar masses, the neutrons will halt the collapse of the star. This will create a Neutron Star. Neutron stars are observed as pulsars or X-ray binaries. When the core is very large, nothing that h...
... middle of paper ...
...ions happen. Supernovas give off many elements we have today including hydrogen and heavier elements such as iron. Supernovas also play a big role in creating new stars because the aftermath of the explosion creates an elemental environment for new interstellar reactions to occur. Discovery of a supernova was difficult at first, given the fact that most occur far away from our galaxy, but new technology now allow scientist to discover many supernova within may galaxies.
Works Cited
Thompson, Andrea. "What Is A Supernova?." Space.com. N.p., n.d. Web. 13 Nov. 2013. .
Nave, R. "Supernovae." Hyper Physics. N.p., n.d. Web. 13 Nov. 2013. .
"Supernovae." Supernovae. N.p., n.d. Web. 13 Nov. 2013. .
If the star is big enough and the pressure inside quickly disappears, gravity would and should slingshot the star into a tiny point with near infinite density with an extremely strong gravitatio... ... middle of paper ... ...is its anti particle. When these particles appear, they will shortly annihilate each other because they are exact opposites (UCR). However, if one of these particle pairs appears at the event horizon of a black hole, the gravity from the black hole will tear the pair of particles apart. The normal particle will have just enough energy to escape the black hole.
All these effects were the cause of the discovery of nuclear fission and its properties. Nuclear Fusion Nuclear fusion is the process used by the sun and the stars in our solar system to produce their energy. Fusion involves smashing hydrogen atoms together at high velocities to form helium, and the matter is made into energy.
Starting with black holes, Khalili describes the creation of one. I found that a black hole is what remains when a massive star dies. Because stars are so massive and made out of gas, there is an intense gravitational field that is always trying to collapse the star. As the star dies, the nuclear fusion reactions stop because the fuel for these reactions gets burned up. At the same time, the star's gravity pulls material inward and compresses the core. As the core compresses, it heats up and eventually creates a supernova explosion in which the material and radiation blasts out into space. What remains is the highly compressed and extremely massive core. The core's gravity is so strong that even light cannot escape. This object is now a black hole and literally cannot be seen because of the absence of light. Because the core's gravity is so strong, the core sinks through the fabric of space-time, creating a hole in space-time. The core becomes the central part of the black hole called the singularity. The opening of the hole is called the event horizon. Khalili describes that there are two different kinds of black holes:
Pulsars, on the other hand, are the remnants of stars that were once ten times the size of our sun. When these stars come to the end of their life, they supernova and leave only a super dense mass called a neutron star or pulsar. These formations are called pulsars because they emit a radio signal and rotate in such a way that it looks as if they are pulsing. Now, it is on to greater things. Let’s get specific with both of these amazing celestial formations.
For an example of a galaxy undergoing an interaction- induced starburst, let us look at M82, a member of a nearby group of galaxies. M82 is a rather disturbed-looking disk galaxy that is currently undergoing a massive amount of star formation in its nuclear region. The cause is theorized to be a close encounter between M82 and M81, its large neighbor, which occurred about a billion years ago (Lipscy & Plavchan 2003).
Stars explode at the end of their lifetime, sometimes when they explode the stars leave a remnant of gasses and, dust behind. What the gasses come together to form depend on the size of the remnant. If the remnant is less than 1.4 solar masses it will become a white dwarf, a hot dead star that is not bright enough to shine. If the remnant is roughly 1.4 solar masses, it will collapse. “The protons and electrons will be squashed together, and their elementary particles will recombine to form neutrons”. What results from this reaction is called a neut...
Solar nebula is a rotating flattened disk of gas and dust in which the outer part of the disk became planets while the center bulge part became the sun. Its inner part is hot, which is heated by a young sun and due to the impact of the gas falling on the disk during its collapse. However, the outer part is cold and far below the freezing point of water. In the solar nebula, the process of condensation occurs after enough cooling of solar nebula and results in the formation into a disk. Condensation is a process of cooling the gas and its molecules stick together to form liquid or solid particles. Therefore, condensation is the change from gas to liquid. In this process, the gas must cool below a critical temperature. Accretion is the process in which the tiny condensed particles from the nebula begin to stick together to form bigger pieces. Solar nebular theory explains the formation of the solar system. In the solar nebula, tiny grains stuck together and created bigger grains that grew into clumps, possibly held together by electrical forces similar to those that make lint stick to your clothes. Subsequent collisions, if not too violent, allowed these smaller particles to grow into objects ranging in size from millimeters to kilometers. These larger objects are called planetesimals. As planetesimals moved within the disk and collide with one another, planets formed. Because astronomers have no direct way to observe how the Solar System formed, they rely heavily on computer simulations to study that remote time. Computer simulations try to solve Newton’s laws of motion for the complex mix of dust and gas that we believe made up the solar nebula. Merging of the planetesimals increased their mass and thus their gravitational attraction. That, in turn, helped them grow even more massive by drawing planetesimals into clumps or rings around the sun. The process of planets building undergoes consumption of most of the planetesimals. Some survived planetesimals form small moons, asteroids, and comets. The leftover Rocky planetesimals that remained between Jupiter and Mars were stirred by Jupiter’s gravitational force. Therefore, these Rocky planetesimals are unable to assemble into a planet. These planetesimals are known as asteroids. Formation of solar system is explained by solar nebular theory. A rotating flat disk with center bulge is the solar nebula. The outer part of the disk becomes planets and the center bulge becomes the sun.
Stars are born in the interstellar clouds of gas and dust called nebulae that are primarily found in the spiral arms of galaxies. These clouds are composed mainly of hydrogen gas but also contain carbon, oxygen and various other elements, but we will see that the carbon and oxygen play a crucial role in star formation so they get special mention. A nebula by itself is not enough to form a star however, and it requires the assistance of some outside force. A close passing star or a shock wave from a supernova or some other event can have just the needed effect. It is the same idea as having a number of marbles on a trampoline and then rolling a larger ball through the middle of them or around the edges. The marbles will conglomerate around the path of the ball, and as more marbles clump together, still more will be attracted. This is essentially what happens during the formation of a star (Stellar Birth, 2004).
A star begins as nothing more than a very light distribution of interstellar gases and dust particles over a distance of a few dozen lightyears. Although there is extremely low pressure existing between stars, this distribution of gas exists instead of a true vacuum. If the density of gas becomes larger than .1 particles per cubic centimeter, the interstellar gas grows unstable. Any small deviation in density, and because it is impossible to have a perfectly even distribution in these clouds this is something that will naturally occur, and the area begins to contract. This happens because between about .1 and 1 particles per cubic centimeter, pressure gains an inverse relationship with density. This causes internal pressure to decrease with increasing density, which because of the higher external pressure, causes the density to continue to increase. This causes the gas in the interstellar medium to spontaneously collect into denser clouds. The denser clouds will contain molecular hydrogen (H2) and interstellar dust particles including carbon compounds, silicates, and small impure ice crystals. Also, within these clouds, there are 2 types of zones. There are H I zones, which contain neutral hydrogen and often have a temperature around 100 Kelvin (K), and there are H II zones, which contain ionized hydrogen and have a temperature around 10,000 K. The ionized hydrogen absorbs ultraviolet light from it’s environment and retransmits it as visible and infrared light. These clouds, visible to the human eye, have been named nebulae. The density in these nebulae is usually about 10 atoms per cubic centimeter. In brighter nebulae, there exists densities of up to several thousand atoms per cubic centimete...
The Big Bang, the alpha of existence for the building blocks of stars, happened approximately fourteen billion years ago. The elements produced by the big bang consisted of hydrogen and helium with trace amounts of lithium. Hydrogen and helium are the essential structure which build stars. Within these early stars, heavier elements were slowly formed through a process known as nucleosynthesis. Nucleosythesis is the process of creating new atomic nuclei from pre-existing nucleons. As the stars expel their contents, be it going supernova, solar winds, or solar explosions, these heavier elements along with other “star stuff” are ejected into the interstellar medium where they will later be recycled into another star. This physical process of galactic recycling is how or solar system's mass came to contain 2% of these heavier elements.
Stars generate huge quantities of energy which is directly related to its composition. The process of how stars produce this energy is called fusion. What is actually occurring is that hydrogen is being converted to helium while powering the star in the process. What happen...
A supernova then forms, and turns into an exploding star that can move into space very quickly. If some scientists are correct, these black holes were made at the same time that the universe was. Some think that black holes can be seen, but they would be wrong. Black holes cannot be seen by the naked eye because of strong gravity pulling all of the light absorbed into the middle of the hole. The only thing visible about black holes is that observers can research and study the orbiting objects of black holes. High energy light is formed when stars and black holes are nearby each other.
Nuclear fusion occurs when two atomic nuclei collide with enough energy to bind together to form one nucleus. Nuclear fusion occurs in the core of our sun, and is the source of its tremendous heat. In the sun hydrogen nuclei, single protons, fuse together and form a new nucleus. In the conversion, a small amount of mass is converted into energy. It is this energy that heats the sun.
When these stars finally run out of fuel, the core is completely burned and all that is left is iron. This causes the star to begin to collapse which then turns into a massive explosion. Stellar black holes are the most common type of black hole out of the three different
Massive black holes also form from stellar collisions, which is when a black hole and a neutron star collide. “Soon after its launch in December 2004, NASA’s Swift telescope observed the powerful, fleeting flashes of light known as gamma ray bursts” (science.nasa.gov). This “afterglow” that was produced gave plenty of evidence that the explosions occurred from