Redox: Decomposition Reactions
When the flame was blown out and the glowing wooden splint was placed halfway into the test tube containing H2O2 and MnO2 crystals, the splint reignited and caught flame once again. This demonstrates the decomposition of H2O2 into water and hydrogen. MnO2 is a catalyst that increases the rate at which H2O2 decomposes. Adding oxygen to a fire will cause it to burn faster and hotter and the oxygen rich test tube allowed the splint to reignite.
2H2O2(l) + MnO2(s) → 2H2O(l) + O2(g) (Eq. 1)
Because MnO2 is a catalyst and and is involved in the reaction only to stimulate the decomposition, it does not appear on the product side of the chemical equation because it is not consumed in the reaction. When H2O2 decomposes, it is reduced to H2O and oxidized to O2.
…show more content…
Redox: Displacement Reactions After the mixture of solid zinc metal and Cu(NO3)2 was allowed to sit for 5 minutes, a single displacement reaction was observed as copper precipitated out and aqueous zinc nitrate was left.
In this case, the nitrate ion moved from one compound to another as the Cu was replaced by Zn. The zinc dissolved to form zinc (II) ions as the copper (II) ions came out of the solution as copper metal and deposited on the surface of the
zinc.
In the lab, Inhibiting the Action of Catechol Oxidase we had to investigate what type of enzyme inhibition occurs when an inhibitor is added. Catechol oxidase is an enzyme in plants that creates benzoquinone.Benzoquinone is a substance that is toxic to bacteria. It is brown and is the reason fruit turns brown. Now, there are two types of inhibitors, the competitive inhibitor and non-competitive inhibitor. For an enzyme reaction to occur a substrate has to bind or fit into the active site of the enzyme. In competitive inhibition there is a substrate and an inhibitor present, both compete to bind to the active site. If the competitive inhibitor binds to the active site it stops the reaction. A noncompetitive inhibitor binds to another region
Table 6 shows the results of the biochemical tests. The isolate can obtain its energy by means of aerobic respiration but not fermentation. In the Oxidation-Fermentation test, a yellow color change was produced only under both aerobic conditions, indicating that the EI can oxidize glucose to produce acidic products. In addition to glucose, the EI can also utilize lactose and sucrose, and this deduction is based on the fact that the color of the test medium broth changed to yellow in all three Phenol Red Broth tests. These results are further supported by the results of the Triple Sugar Iron Agar test. Although the EI does perform fermentation of these three carbohydrates, it appears that this bacterium cannot perform mixed acid fermentation nor 2,3-butanediol fermentation due to the lack of color change in Methyl Red and Vogues-Proskauer
Compress the safety bulb, hold it firmly against the end of the pipette. Then release the bulb and allow it to draw the liquid into the pipette.
In this experiment the enzyme peroxidase and the substrate hydrogen peroxide were not mixed initially, instead they were both placed in separate tubes and were incubated at a specific temperature, to prevent hydrogen peroxide from undergoing any reaction with peroxidase until they both acquire the required temperature.
For the first phenomena, he noted how all combustions involved the formation of fire or light. With that in mind, Lavoisier also observed that this combustion occurs only through dephlogisticated air / pure air. Other airs (e.g. carbon dioxide) act as a fire extinguisher similar to that of water. Another combustion phenomenon he outlined was how the weight of the burnt material directly relates to the amount of air used in the reaction. Moreover, he also described how certain substances turn into acids after it has been burn...
The reaction between the sugar in the gummy bear and the melted potassium chlorate in this experiment is an example of an exothermic reaction. An exothermic reaction is a chemical reaction that releases energy as heat or light. When potassium chlorate is melted, it produces potassium chloride and oxygen. When the sugar and oxygen react, energy accumulated in the chemical bonds of the sugar molecules is released. This is a combustion reaction, an exothermic process in which a substance reacts specifically with oxygen to produce heat, water, and carbon dioxide. During the process of combusting the sugar in the gummy bear with oxygen, the products formed are heat, a purple flame (light), carbon dioxide, and water.
Number of moles of iron used: nFe = m = 2.00g Fe =0.03581 = 3.58 x 10-2 mol
The first thing in a firework is the oxidizing agent. These produce the Oxygen to burn the mixture. Oxidizers are usually nitrates, chlorates or perchlorates. The common oxidizers are nitrates. These are made up of a metal ion and the nitrate ion. I'll use potassium nitrate as an example. Nitrates only give up 1/3 of their oxygen. The resulting equation would look something like this:
OH 27000 J/g. Hexane C H 35000 J/g. Variables:.. The variables used in this experiment are: Volume of water, mass of fuel, temperature of water, height of tube. height of flame, type of fuel, time it takes, width of flame, colour. of flame, material of container, size and surface area, purity of.
In this lab we had to figure out what our mystery compound was by performing two tests. One of the tests was called the Flame Test, which we use to find out the metal element in the compound. It is used to find the metal because each metal gives off its own unique flame color. The other test is called the Precipitate Test, which we use to find out the non-metal element in our compound by adding silver nitrate to it. It’s used to find the non-metal because each non-metal has its own unique reaction to silver nitrate.
2. A piece of copper was obtained. It was a small, rounded wire that could be bent, although with a greater difficulty than the Mg strip from the previous account. It was copper in color (never saw that one coming, didja) and had a metallic luster. The copper was put in the flame of a Bunsen burner and after several seconds, it began to blacken. The flame was applied to it for about a minute and a half, and the copper appeared silvery under intense heat, but when it was removed from the flame, the silver color quickly faded. The copper strip was now black all over, and the change in color suggested that a chemical change had occurred. The Cu had reacted with the oxygen in the air and formed copper oxide. The black color could be scraped off, but only in small slivers. It would crumble when it was irritated with a great deal of pressure, respectively. It was a synthesis reaction as displayed by the equation here.
Goal: To make 1 grams of Cu and 2.54 grams of ZnSO4 Anhydrous Equation: Zn + CuSO4.5H2O ------> ZnSO4+ Cu Procedure: First, we measured out 1.03 grams of Zn and 3.93g grams of CuSO4. Next we took the two and mixed them in a flask together. After we put them in the flask together we added enough water to get the reaction started.
Combustion reactions consist of three main things that are put together to depict something called a combustion triangle: heat, fuel and oxygen, in the experiment we conducted we used the matches that were provided in the lab, for the fuel we used Acetylene (C₂H₂) and the third component is Oxygen gas (O₂). Moreover such reactions must be conducted under great care because of the combustions that occurs, therefore any person interacting with such reactions should be completely aware of the dangers that accompany such experiments
... accounts for 95% of the hydrogen produced today. In addition to steam reforming, another natural gas-hydrogen process called partial oxidation produces hydrogen by burning methane in the presence of air. Both methods produce a synthesis gas, which is then reacted with additional steam to produce a higher yield, higher hydrogen content gas stream.