Wait a second!
More handpicked essays just for you.
More handpicked essays just for you.
Compare advantages and disadvantages of different programming languages
Don’t take our word for it - see why 10 million students trust us with their essay needs.
In mathematics, Pi is the symbol denoting the ratio of the circumference of a circle to its diameter. The ratio is approximately 3.14159265, pi being an irrational number (one that cannot be expressed as a simple fraction or as a decimal with a finite number of decimal places) and a transcendental number (one without continuously recurrent digits). Electronic computers in the late 20th century have carried pi to more than 100,000,000 decimal places.
Using a computer program, I calculated pi into 1000 decimals:
3.14159265 358979323846 2643383279 5028841971 6939937510
5820974944 5923078164 0628620899 8628034825 3421170679
8214808651 3282306647 0938446095 5058223172 5359408128
4811174502 8410270193 8521105559 6446229489 5493038196
4428810975 6659334461 2847564823 3786783165 2712019091
4564856692 3460348610 4543266482 1339360726 0249141273
7245870066 0631558817 4881520920 9628292540 9171536436
7892590360 0113305305 4882046652 1384146951 9415116094
3305727036 5759591953 0921861173 8193261179 3105118548
0744623799 6274956735 1885752724 8912279381 8301194912
9833673362 4406566430 8602139494 6395224737 1907021798
6094370277 0539217176 2931767523 8467481846 7669405132
0005681271 4526356082 7785771342 7577896091 7363717872
1468440901 2249534301 4654958537 1050792279 6892589235
4201995611 2129021960 8640344181 5981362977 4771309960
5187072113 4999999837 2978049951 0597317328 1609631859
5024459455 3469083026 4252230825 3344685035 2619311881
7101000313 7838752886 5875332083 8142061717 7669147303
5982534904 2875546873 1159562863 8823537875 9375195778
1857780532 1712268066 1300192787 6611195909 2164201989.
Pi occurs in various mathematical calculations. The circumference (c) of a circle can be determined by multiplying the diameter (d) by : c = d. The area (A) of a circle is determined by the square of the radius (r): A = r2. Pi is applied to mathematical problems involving the lengths of arcs or other curves, the areas of ellipses, sectors, and other curved surfaces, and the volumes of solids. It is also used in various formulas of physics and engineering to describe such periodic phenomena as the motion of pendulums, the vibration of strings, and alternating electric currents.
In very ancient times, 3 was used as the approximate value of pi, and not until Archimedes (3rd century BC) does there seem to have been a scientific effort to compute it; he reached a figure equivalent to about 3.14. A figure equivalent to 3.1416 dates from before AD 200. By the early 6th century Chinese and Indian mathematicians had independently confirmed or improved the number of decimal places. By the end of the 17th century in Europe, new methods of mathematical analysis provided various ways of calculating pi. Early in the 20th century the Indian mathematical genius Srinivasa Ramanujan developed ways of calculating pi that were so efficient that they have been incorporated into computer algorithms, permitting expressions of pi in millions of digits.
As Pi is an active disciple of three separate religions, one would assume he has a shifting opinion on reality and it’s roots. Despite seeing himself as a practicing Hindu, Christian, and Muslim, he believes that there is a unity of all things. This contradicts
Geometry, a cornerstone in modern civilization, also had its beginnings in Ancient Greece. Euclid, a mathematician, formed many geometric proofs and theories [Document 5]. He also came to one of the most significant discoveries of math, Pi. This number showed the ratio between the diameter and circumference of a circle.
The novel Life of Pi, by Yann Martel, and the short story “Miss Brill”, by Katherine Mansfield, appear to contain the same internal ideas. The strongest similarity between the stories are the characters. But that is also the strongest difference. PI and Miss Brill suffer from loneliness, misunderstood simple mindedness, and having to deal with others putting them down.
The Golden ratio is an infinite number that is rounded approximately to 1.618. Euclid referred to the decimal form of the golden ratio, which is 0.61803…, in his book The Elements. The golden ratio is a very special number with many properties. One of its properties is that to square the golden ratio, you could just add one to it. The formula for squaring the golden ratio would be phi²= Phi + 1. Another property of the golden ratio is that to get the reciprocal you can just subtract one. The reciprocal of Phi would be Phi-1. The golden ratio is often written as a/b
Areas of the The following shapes were investigated: square, rectangle, kite. parallelogram, equilateral triangle, scalene triangle, isosceles. triangle, right-angled triangle, rhombus, pentagon, hexagon, heptagon. and the octagon and the sand. Results The results of the analysis are shown in Table 1 and Fig.
Pi is an indian, but except Hinduism, he also believes in Christianity and Islam. It is pretty unusual. However, these three religions save his life when he meets storm on the sea. Religion is a key component in Pi’s survival because it lets him understand that he has to coexist with other creatures, it leads Pi to accept that even if he did not survive he would be redeemed, and it gives Pi the hope for survival.
from his tables, which showed powers of 10 with a fixed number used as a base.
Ever wonder how scientists figure out how long it takes for the radiation from a nuclear weapon to decay? This dilemma can be solved by calculus, which helps determine the rate of decay of the radioactive material. Calculus can aid people in many everyday situations, such as deciding how much fencing is needed to encompass a designated area. Finding how gravity affects certain objects is how calculus aids people who study Physics. Mechanics find calculus useful to determine rates of flow of fluids in a car. Numerous developments in mathematics by Ancient Greeks to Europeans led to the discovery of integral calculus, which is still expanding. The first mathematicians came from Egypt, where they discovered the rule for the volume of a pyramid and approximation of the area of a circle. Later, Greeks made tremendous discoveries. Archimedes extended the method of inscribed and circumscribed figures by means of heuristic, which are rules that are specific to a given problem and can therefore help guide the search. These arguments involved parallel slices of figures and the laws of the lever, the idea of a surface as made up of lines. Finding areas and volumes of figures by using conic section (a circle, point, hyperbola, etc.) and weighing infinitely thin slices of figures, an idea used in integral calculus today was also a discovery of Archimedes. One of Archimedes's major crucial discoveries for integral calculus was a limit that allows the "slices" of a figure to be infinitely thin. Another Greek, Euclid, developed ideas supporting the theory of calculus, but the logic basis was not sustained since infinity and continuity weren't established yet (Boyer 47). His one mistake in finding a definite integral was that it is not found by the sums of an infinite number of points, lines, or surfaces but by the limit of an infinite sequence (Boyer 47). These early discoveries aided Newton and Leibniz in the development of calculus. In the 17th century, people from all over Europe made numerous mathematics discoveries in the integral calculus field. Johannes Kepler "anticipat(ed) results found… in the integral calculus" (Boyer 109) with his summations. For instance, in his Astronomia nova, he formed a summation similar to integral calculus dealing with sine and cosine. F. B. Cavalieri expanded on Johannes Kepler's work on measuring volumes. Also, he "investigate[d] areas under the curve" ("Calculus (mathematics)") with what he called "indivisible magnitudes.
The Scientific Revolution was sparked through Nicolaus Copernicusí unique use of mathematics. His methods developed from Greek astr...
In 500 B.C. the abacus was first used by the Babylonians as an aid to simple arithmetic. In 1623 Wihelm Schickard (1592 - 1635) invented a "Calculating Clock". This mechanical machine could add and subtract up to 6 digit numbers, and warned of an overflow by ringing a bell. J. H. Mueller comes up with the idea of the "difference engine", in 1786. This calculator could tabulate values of a polynomial. Muellers attempt to raise funds fails and the project was forgotten. Scheutz and his son Edward produced a 3rd order difference engine with a printer in 1843 and their government agreed to fund their next project.
Irrational numbers are real numbers that cannot be written as a simple fraction or a whole number. For example, irrational numbers can be included in the category of √2, e, Π, Φ, and many more. The √2 is equal to 1.4142. e is equal to 2.718. Π is equal to 3.1415. Φ is equal to 1.6180. None of these numbers are “pretty” numbers. Their decimal places keep going and do not end. There is no pattern to the numbers of the decimal places. They are all random numbers that make up the one irrational number. The concept of irrational numbers took many years and many people to discover and prove (I.P., 1997).
They constructed the 12-month calendar which they based on the cycles of the moon. Other than that, they also created a mathematical system based on the number 60 which they called the Sexagesimal. Though, our mathematics today is not based on their system it acts like a foundation for some mathematicians. They also used the basic mathematics- addition, subtraction, multiplication and division, in keeping track of their records- one of their contributions to this world, bookkeeping. It was also suggested that they even discovered the number of the pi for they knew how to solve the circumference of the circle (Atif, 2013).
The history of the computer dates back all the way to the prehistoric times. The first step towards the development of the computer, the abacus, was developed in Babylonia in 500 B.C. and functioned as a simple counting tool. It was not until thousands of years later that the first calculator was produced. In 1623, the first mechanical calculator was invented by Wilhelm Schikard, the “Calculating Clock,” as it was often referred to as, “performed it’s operations by wheels, which worked similar to a car’s odometer” (Evolution, 1). Still, there had not yet been anything invented that could even be characterized as a computer. Finally, in 1625 the slide rule was created becoming “the first analog computer of the modern ages” (Evolution, 1). One of the biggest breakthroughs came from by Blaise Pascal in 1642, who invented a mechanical calculator whose main function was adding and subtracting numbers. Years later, Gottfried Leibnez improved Pascal’s model by allowing it to also perform such operations as multiplying, dividing, taking the square root.
The 17th Century saw Napier, Briggs and others greatly extend the power of mathematics as a calculator science with his discovery of logarithms. Cavalieri made progress towards the calculus with his infinitesimal methods and Descartes added the power of algebraic methods to geometry. Euclid, who lived around 300 BC in Alexandria, first stated his five postulates in his book The Elements that forms the base for all of his later Abu Abd-Allah ibn Musa al’Khwarizmi, was born abo...
Between 1850 and 1900, the mathematics and physics fields began advancing. The advancements involved extremely arduous calculations and formulas that took a great deal of time when done manually.