Wait a second!
More handpicked essays just for you.
More handpicked essays just for you.
Conclusion on black holes
Key to understanding black holes
Key to understanding black holes
Don’t take our word for it - see why 10 million students trust us with their essay needs.
Recommended: Conclusion on black holes
What are Black Holes?
A black hole is theorized to be a collection of collapsed matter of whose gravitational pull is so strong that not even light can escape its force. The matter is is forced in a very, very tiny area and therefore the matter is very dense. Since light cannot escape, they are considered to be truly black. This, obviously, makes it hard to detect an actual black hole, and therefore, have only been theorizd to exist. These theories are slowly turning into "conclusive evidence." This evidence includes the particle dust given off from matter entering the black hole, as well as observations of orbits of bodies near the black hole.
Black holes are usually formed after supernova explosions, in which the remnants of this explosion
…show more content…
Anything that enters this radius will not exit, due to the tremendous amount of gravitational pull.
So, How do we know?
Again, as mentioned earlier, we can't directly observe a black hole. We can, however, make observations to the surroundings around the black hole. It used to be that theorists were the only scientific persons who acknowledged an existence of black holes, however, today, the story is quite different. The popular idea today is that black holes do exist and are common in all the galaxies so far investigated. One reason is Einstein's theory of General Relativity. This theory accounts for the existence of black holes, and if they do not exist, then the General Relativity theories by Einstein would be wrong. Considering all the tests and experiements done to date to try and disprove this theory have all been rejected, this seems unlikely. Also, scientists today look for high concentration of mass in a small area. Calculations and technology allow this to happen. Another factor in proving the existence of black holes is the Hubble Space Telescope. The Hubble Space Telescope has accumulated a large amount of data and information supporting the existence of black
…show more content…
Now they're going for their daily intergalactic space ride in their seperate Super-Speed Rocket Cruisers when Dick suddenly loses control of his Cruiser and ends up crossing into the Swarzschild radius of a black hole. Jane, with good intuition, knows there is nothing she can do. So, what does she see?
Jane will never actually see Dick reach the "event horizon," or the boundary at which light can enter but never escape. Dick will surely reach the event horizon, but not from Jane's perspective. As Dick becomes closer and closer to the horizon, the light emitted from Dick will take longer and longer to reach Jane. As Dick reaches the horizon, the light will not be able to escape, and therefore never reach Jane. Dick will appear to be "frozen," or standing still to Jane.
Alternative:
Dick loses control of his Rocket Cruiser, but this time ends right on the brink of the horizon. He hasn't crossed the horizon, but is as close as you can get. He returns to Jane to find her much older, and yet hardly any time has passed to Dick. What's going on
Death by Black Hole: And Other Cosmic Quandaries explains about his ability to blend content, accessibility, and humor, Tyson is a natural teacher who simplifies some of the most complex concepts in astrophysics
The origins of the super-massive black holes which concludes how they were formed and what caused them to form is an unsolved problem which is yet a mystery of astrophysics. ( Millis 2014)
Geologist John Mitchell is credited with first devising the idea of a black hole. He said that if some force could compress the sun down to an small enough size, it would have a gravitational field so strong, that one would need to be going faster than the speed of light to escape it (UTFC). All objects in the universe have what is called a schwarzschild radius. An object’s schwarzschild radius is the radius that an object would have to be compressed into in order to have an escape velocity greater than that of the speed of light, or a black hole. (VSBH).
Starting with black holes, Khalili describes the creation of one. I found that a black hole is what remains when a massive star dies. Because stars are so massive and made out of gas, there is an intense gravitational field that is always trying to collapse the star. As the star dies, the nuclear fusion reactions stop because the fuel for these reactions gets burned up. At the same time, the star's gravity pulls material inward and compresses the core. As the core compresses, it heats up and eventually creates a supernova explosion in which the material and radiation blasts out into space. What remains is the highly compressed and extremely massive core. The core's gravity is so strong that even light cannot escape. This object is now a black hole and literally cannot be seen because of the absence of light. Because the core's gravity is so strong, the core sinks through the fabric of space-time, creating a hole in space-time. The core becomes the central part of the black hole called the singularity. The opening of the hole is called the event horizon. Khalili describes that there are two different kinds of black holes:
The characteristic scale of gravitational mi- crolensing is the radius of the Einstein ring RE. The Einstein ring occurs when lens and source are aligned and the light from the source is shaped into a ring through the gravitational lensing by the gravitational field of the ”lensing” ob- ject.
...f gas, which collapsed and broke up into individual stars. The stars are packed together most tightly in the center, or nucleus. Scientists believe it is possible that at the very center there was too much matter to form an ordinary star, or that the stars which did form were so close to each other that they coalesced to form a black hole. It is argued that really massive black holes, equivalent to a hundred million stars like the Sun, could exist at the center of some galaxies
In truth, English geologist John Michell was the first to suggest the existence of black holes. He referred to them "dark stars" and based his calculations on Newt...
The idea of Black Holes was first proposed in the 1700s by scientists John Michell and Pierre-Simon Laplace, who argued, independant of each other, that there might be objects in the universe with such a large gravitational force, that even light could be trapped. Published in 1916 Einstein’s theory of general relativity which included how gravity does affect light’s motion, gave way to scientific discoveries involving black holes. In Einstein’s own theory, he was only able to approximate the solutions to some of his own equations, however Karl Schwarzschild was able to provide the solutions. These solutions described objects like black holes that had such massive density that nothing could escape them. Schwarzschild theorized that if an object had such a small radius, that the escape velocity will be greater than the speed of light. Because as previously mentioned, nothing is faster than the speed of light, the object would be sucked into itself by it’s own gravitational pull, which would cause the object to disappear. What r...
Although Dr. Hawking impacts many areas of science and cosmology, his work with black holes has revolutionized modern physics. He works in all areas of black holes, including how they work, singularities, and most importantly, Hawking radiation. Black holes are very simpl...
Just recently a major discovery was found with the help of a device known as The Hubble Telescope. This telescope has just recently found what many astronomers believe to be a black hole, After being focuses on a star orbiting empty space. Several pictures of various radiation fluctuations and other diverse types of readings that could be read from that area which the black hole is suspected to be in.
There are two ways to prove the existence of dark matter. We know that the universe must have a certain mass in order for its attractive gravitational forces to slow the expansion of the universe which started at the big bang. We can precisely calculate the rate at which the universe is expanding currently, and how fast it has expanded in the past. From this we get the theoretical mass of the universe. This figure falls far short of the visible mass of the universe, which consists of stars, planets, and hot gas. This is how scientists are able to prove that we can only see about 5% of our universe.
A collision where one party collides with another and leaves the scene is considered to be illegal in the United States. If a white dwarf would collide with the sun this would be the exact case. It would take around an hour for the white dwarf to go completely through the sun and then after causing great destruction and changing the chemical and physical properties of the sun it would just continue on its path and leave behind massive destruction.
Stars are born in the interstellar clouds of gas and dust called nebulae that are primarily found in the spiral arms of galaxies. These clouds are composed mainly of hydrogen gas but also contain carbon, oxygen and various other elements, but we will see that the carbon and oxygen play a crucial role in star formation so they get special mention. A nebula by itself is not enough to form a star however, and it requires the assistance of some outside force. A close passing star or a shock wave from a supernova or some other event can have just the needed effect. It is the same idea as having a number of marbles on a trampoline and then rolling a larger ball through the middle of them or around the edges. The marbles will conglomerate around the path of the ball, and as more marbles clump together, still more will be attracted. This is essentially what happens during the formation of a star (Stellar Birth, 2004).
Einstein himself, working at Princeton with Nathan Rosen had discovered that the equations of relativity actually represent a black hole as a bridge between two regions of flat space-time, a phenomenon known as the “Einstein-Rosen Bridge”. Later on, in 1963, the New Zealand mathematician Roy Kerr found that if a black hole is rotating, a singularity still forms, but in the form of a ring, not a point. It was believed that in principle, a particle may be able to fall towards the singularity, but if at some point moved through the hole instead of the ring, the particle may not be lost forever. Therefore, with these theories in mind, a particle falling into a black hole will fall through the ring that the singularity has become, then going through the Einstein-Rosen Bridge, eventually being spewed out of the white hole into another space-time continuum.
Initially, Albert Einstein was the person to predict the existence of black holes through his General Theory of Relativity, in which he had created several general equations that show the interaction of gravitation as a result of space being curved by matter or energy. In 1915, he published Einstein’s field equations, which specify how the geometry of space and time is influenced by whatever matter and radiation are present, and form the core of Einstein's general theory of relativity (Redd). The general theory relativity was the initial step in the process to finding out more information about black holes. As time went on, there were a few main contributors that solved these equations to help develop better theories on black holes. One of the most important contributors to the development of a better u...