Wait a second!
More handpicked essays just for you.
More handpicked essays just for you.
Charge to mass ratio of electron
Don’t take our word for it - see why 10 million students trust us with their essay needs.
Recommended: Charge to mass ratio of electron
Introduction
The historical results of this experiment by determination of the charge to mass ratio of an electron allowed physicist to work out the miniscule mass of an electron through the use of an external magnetic field. Magnetic fields apply a magnetic force on charged particles perpendicular to their direction of motion and to the magnetic field itself. This allows for the magnetic force to act as a centripetal force which then, through analysis, allows for the determination of certain charged particles through the analysis of their curve radius. In lab 15, Measurement of Charge to Mass Ratio for Electrons, the objective was to measure the charge to mass ratio (e/m) of an electron through the use of a mercury vapor chamber. This was done through the graphical analysis by the linearized equation (4). The goal was to construct a linear graph in which the slope and slope error was calculated using the Linest function, the slope than allows for the derivation of the charge to mass ratio of an electron. Error propagation (error formulas) was also used in this experiment to account for sources of error that could have occurred.
Equations used:
Kinetic Energy: 1/2mv2=eV, where m is the mass of an electron, v is the electron speed, e is the elementary charge of an electron, and V was the voltage used in the experimental calculation.
Lorentz Force: eVB=m(v2/r) =eV(Bh-Be), this accounts for the centripetal force by making it equal the magnetic force acting on the mercury (electron) beam. Same variables as equation (1) except for r is the radius curvature of the mercury beam, Bh is the Helmholtz coil magnetic field and Be is the Earth’s magnetic field. This equation along with the kinetic energy equation leads to the derivation of...
... middle of paper ...
...hamber to view photons released by de-exciting mercury atoms and the physical phenomenon of the way charged particles are affected in a magnetic field in this lab allowed for the manipulation of current and voltage to produce a value of the charge to mass ratio of an electron. The experimental value was determined to be 3.97x1010 C/Kg, while the theoretical value is 1.76x1011 C/Kg. Thus, this experiment showed accurate results with minor sources of error, determined to be: the affect of the Earth’s magnetic field and imprecise measurements. Ultimately, the physics principles of magnetism, current and voltage were used throughout this experiment. In conclusion, the calculation of the charge to mass ratio of an electron is possible through the use of graphical analysis corresponding to equation (r) and error propagation, creating a successful experimental measurement.
...the mass spectrometer. This is called an electron impact source. Gases and volatile liquid samples are allowed to leak into the ion source from a reservoir. Non-volatile solids and liquids may be introduced directly. Cations formed by the electron bombardment (red dots) are pushed away by a charged repeller plate (anions are attracted to it), and accelerated toward other electrodes, having slits through which the ions pass as a beam. Some of these ions fragment into smaller cations and neutral fragments. A perpendicular magnetic field deflects the ion beam in an arc whose radius is inversely proportional to the mass of each ion. Lighter ions are deflected more than heavier ions. By varying the strength of the magnetic field, ions of different mass can be focused progressively on a detector fixed at the end of a curved tube. Because the mass of each individual ion
Mottelay, F. P., (2013, November 20) Bibliographical History of Electricity and Magnetism, p. 114. retrieved from:http://en.wikipedia.org/wiki/Aurora_(astronomy)
From the bar chart, we see that the potential energy in general agrees with the case above, i.e. it increases up to the particle’s maximum height and decreases from that point on. The kinetic energy, on the other hand, behave significantly differently than expected. Rather than decreasing form the beginning to the maximum height and then increasing, the kinetic energy appears to fluctuate in a somewhat random manner. This can be best understood by treating the experiment as a closed system, where energy (but not mass) can leave the system and enter the surroundings. As the projectile moves through the air, it collides into air particles, imparting some of its energy to these particles in the form of friction, heat and sound, thus losing energy in the process. We therefore would expect the sum of the potential energy and the kinetic energy to decrease over time as the projectile loses energy to its surroundings. However, from the data from document , this also does not seem to be the case. This discrepancy can be explained by including experimental uncertainty, where errors in our measurements can lead to unjustified conclusions. In order to reduce the sources of these errors, the experiment should be run multiple times in ideal conditions, averaging over the results and calculating the resulting averaged energies.
In the article,"Energy Story", it tells you all about basic energy and how scientists found out how it works. It tells you about each part of an electron and what part is what. The center is called the Nucleus. Electrons and atoms move together to create what is known as electricity. Atoms and electrons flow through an object
"E=mc2 Definition | Explained |Define ." The Collapse of Special Relativity. N.p., n.d. Web. 23 Nov. 2011.
Collision Theory Experiment 1. What is the difference between a. and a Temperature increases the number of collisions. When the temperature increases the particles move quicker. If they're moving quicker, they are going to have more collisions. [ IMAGE] 2.
Davisson and Germer found that by varying the applied voltage to the electron gun, the maximum intensity of electrons diffracted by the atomic surface was found at different angles. The highest intensity was found to be at an angle θ = 50° with a voltage of 54 V, giving the electrons a kinetic energy of 54 eV.
The main objective of this experiment is to investigate the relationship between gravitational energy and electric and magnetic energy. This will be achieved by attempting to suspend a light ring of copper and/or aluminum around a solenoid with a current passing through it. The only presumption is that if the ring is unable to be levitated (due to lack of power), there will still be movement and the ring will jump up from the base of the solenoid.
The next big step in the discovery of the atom was the scientific test that proved the existence of the atom. After the discovery of the atom we had the discovery of subatomic particles. With the discovery of the subatomic particles came the research, which came from experiments that were made to find out more about the subatomic particles. This research is how we uncovered that most of the weight of an atom is from its nucleus. With the gold foil experiment, tested by Ernest Rutherford, he discovered the existence of the positively charged nucleus. He proved this when the experiment was happening, a small fraction of the photons th...
• Hydrogen charges were as follows: Hydrogen’s 4,5=-.004, 6=.021, 7,8=.020, and the charge of hydrogen 9=.447
Computer games have steadily become a form of mainstream entertainment ever since Pong was released back in 1958. Today, it is hard to find an electronics department in any store that doesn't carry some sort of computer game. "Big deal," you say, "Everyone knows about computer games. What does they have to do with physics?" Well, the technology for creating more powerful software is constantly advancing, and since games are a form of software, they too become more and more advanced. As games become more advanced, game developers aim to create games that offer a more realistic experience. The technology has advanced to such a stage that making the games look real is no problem, but making a truly immersive experience is something different. That's where physics comes in.
In 1905, Albert Einstein confirmed the Theory of Special Relativity. This stated that objects moving at a constant speed move in relation to each other. This discovery managed to unify space and time, as a concept, because of how things appear differently in space depending on the speed someone is going. This wasn’t the only concept that was a result of the Theory of Special Relativity, however. Another idea that came about as a result of the Theory of Special Relativity was the Mass-Energy Equivalence. This idea states that the energy exerted by an object is equal to the mass of that object. The Mass-Energy Equivalence is described by the equation “E = mc²”, the “E” representing energy, the “m” representing mass, and the “c” representing the speed of light. The Mass-Energy Equivalence theory was developed by Albert Einstein and thoroughly explains how mass and energy work together, as well as contributing to the development of hospital diagnostics and space technology.
Throughout the past century, investigations of quantum and particle physics phenomena have proven to show the most significant concepts and ideas in the physical and sub-atomic world. However, the discoveries yet to be made are endless. One of the most fascinating concepts in the sub-atomic universe is the idea of spintronics. Spintronics is the quantum study of the independent angular momentum (not to be confused with the orbital angular momentum of the electron) of a particle, typically that of an electron (Introduction). An electron is a fundamental particle, with a negative charge, and is independently studied in the process of spintronic devices. The spin angular momentum of electrons is ±½ћ. Devices that use the properties
Electric currents produce magnetic fields, they can be as small as macroscopic currents in wires, or microscopic currents in atomic orbits caused by electrons. The magnetic field B is described in terms of force on a moving charge in the Lorentz force law. The relationship of magnetic field and charges leads to many practical applications. Magnetic field sources are dipolar in nature, with a north and south magnetic pole. The magnetic field SI unit is the Tesla, it can be seen in the magnetic part of the Lorentz force law F magnetic = qvB composed of (Newton x second)/(Coulomb x meter). The smaller magnetic field unit is the
Scientists from earlier times helped influence the discoveries that lead to the development of atomic energy. In the late 1800’s, Dalton created the Atomic Theory which explains atoms, elements and compounds (Henderson 1). This was important to the study of and understanding of atoms to future scientists. The Atomic Theory was a list of scientific laws regarding atoms and their potential abilities. Roentagen, used Dalton’s findings and discovered x-rays which could pass through solid objects (Henderson 1). Although he did not discover radiation from the x-rays, he did help lay the foundations for electromagnetic waves. Shortly after Roentagen’s findings, J.J. Thompson discovered the electron which was responsible for defining the atom’s characteristics (Henderson 2). The electron helped scientists uncover why an atom responds to reactions the way it does and how it received its “personality”. Dalton’s, Roentagen’s and Thompson’s findings helped guide other scientists to discovering the uses of atomic energy and reactions. Such applications were discovered in the early 1900’s by using Einstein’s equation, which stated that if a chain reaction occurred, cheap, reliable energy could b...