Wait a second!
More handpicked essays just for you.
More handpicked essays just for you.
Photosynthesis Quizlet
Process of photosynthesis essay
Process of photosynthesis 8th grade science
Don’t take our word for it - see why 10 million students trust us with their essay needs.
Recommended: Photosynthesis Quizlet
HYPOTHESIS LAB 7 Photosynthesis In exercise 1, I hypothesize that the most soluble pigments in the solvent will move furthest on the chromatography paper. In exercise 2, I hypothesize that the light-adapted algae sample will absorb more light than the dark-adapted sample. INTRODUCTION In exercise 1, the photosynthetic pigments in spinach leaf extract will be separated using chromatography paper. Chromatography is a technique used by scientist to separate substances from a mixture in order to determine what that mixture is made up of. A small sample of the mixture will be added to the chromatography paper and put in a solvent tank so the bottom of the paper makes contact with the solvent. The chromatography paper has capillaries so once the …show more content…
solvent absorbs onto the paper, the different substances will be absorbed and carried up the paper at different rates, separating the substances.
The distance the substance has moved can be calculated by the retention factor, Rf, the distance the color has traveled divided by the total distance the solvent has traveled. The Rf value is also an indication of how soluble substances are in a given solvent. Rf values closer to 1 indicate that the substance is very soluble in the solvent and smaller Rf values indicate substances that are not as soluble in the solvent. In the spinach leaf extract, we will be looking for the separation of chlorophyll a, chlorophyll b, lutein and β-carotene. In exercise 2, chlorophyll a and chlorophyll b will be studied in Chlamydomonas reinhardtii algae. One sample will be from algae that are adapted to dark light and another that are adapted to dark light. Chlorophyll a and b are important pigments in plant cells because they allow photosynthesis to occur by absorbing light and converting it to light energy for the plants use. Chlorophyll b is considered an accessory pigment because it transfers the light it absorbs to chlorophyll a to be converted to light energy. (University of Miami) Chlorophyll a and b both absorb red and blue light and reflect
green light, which give plants their green pigment. The light-adapted and dark-adapted sample will be measured in the spectrophotometer at different wavelengths in order to identify chlorophyll a and b. The amount of chlorophyll a and b can be measured by their corresponding equations:
To test for this, DCIP (a chloroplast isolation buffer) was used to The hypothesis for this experiment was that the cell fraction in the cuvette marked P2 will have more chloroplast activity because it will exhibit greater color change and differences in the absorbance readings compared to the other cuvettes when exposed under the condition of light; moreover, this notion was believed to be so because the more a cell fraction is centrifuged, the more intact chloroplasts we’ll find (Leicht and McAllister, This meant that this cuvette (tested under light) should display a higher decrease in DCIP due to the reduction in absorbance (dependent variable) opposed to the other cell fractions tested depending on a sixteen minute period (independent variable). The overall goal was to provide proof, through data, that the cell fractions put under the light during the sixteen minute period would indicate a higher set of chloroplast activity versus the ones put in the
To undertake titration and colorimetry to determine the concentration of solutions By carrying out titrations and colorimetry, the aim of this investigations was to use these methods such that the concentrations of different solutions used can be identified, and to help find the concentration of the unknown solution that were given. Using Titration and colorimetry the concentrations of different solutions in general can be determined and this helps to identify solutions with unknown concentrations. In this assignment I was asked to carry out two different scientific techniques and find the concentration of different solutions.
... in the chloroplasts in some of their cells. Chlorophyll allows the energy in sunlight to drive chemical reactions. Chloroplasts act as energy transducers, converting light energy into chemical energy. So as the plant has more light the chlorophyll inside the chloroplasts can react faster absorbing in more light for food and energy.¡¨ So this shows my prediction was correct for in my experiment and shown in my result table and graph the more light intensity there is on a plant the higher the rate of my photosynthesis will be. My prediction is very close to what I said the results will be so my prediction was correct and has been proven to be correct in my result table, graph and now explained again in my conclusion.
ABSTRACT: Chloroplasts carry out photosynthetic processes to meet the metabolic demands of plant cells (Alberts, 2008). They consist of an inner thylakoid membrane and a stroma. (Parent et. al, 2008).In this experiment we demonstrate the unique protein compositions of isolated thylakoid and stromal fractions from broken and whole spinach chloroplasts. Because these compartments carry out different metabolic processes, we confirm our hypothesis that performing SDS-PAGE on these fractions will result in distinct patterns on the gels. In isolating and analyzing nucleic acid from broken, whole, and crude chloroplast samples we demonstrate that genes for photosynthetic protein psbA are found in chloroplast DNA, while genes for photosynthetic enzyme
The red pigment and the green pigment will follow the alcohol higher on the coffee filter than the yellow pigment. There will only be chlorophyll left in the spinach leaf, the yellow leaf will contain chlorophyll and xanthophyll & the red leaf will contain chlorophyll, carotene, and xanthophyll. My hypothesis was supported.
The high rate of absorbance change in blue light in the chloroplast samples (Figure 1) can be attributed to its short wavelength that provides a high potential energy. A high rate of absorbance change is also observed in red light in the chloroplast samples (Figure 1), which can be accredited to the reaction centre’s preference for a wavelength of 680nm and 700nm – both of which fall within the red light range (Halliwell, 1984). Green light showed low rates of photosynthetic activity and difference in change in absorbance at 605nm in the chloroplast samples (Figure 1) as it is only weakly absorbed by pigments, and is mostly reflected. The percentage of absorption of blue or red light by plant leaves is about 90%, in comparison to the 70–80% absorbance in green light (Terashima et al, 2009). Yet despite the high absorbance and photosynthetic activity of blue light, hypocotyl elongation was suppressed and biomass production was induced (Johkan et al, 2012), which is caused by the absorption of blue light by the accessory pigments that do not transfer the absorbed energy efficiently to the chlorophyll, instead direction some of the energy to other pathways. On the other hand, all of the red light is absorbed by chlorophyll and used efficiently, thus inducing hypocotyl elongation and the expansion in leaf area (Johkan et al, 2012).
An Analysis and Evaluation of Data from Photosynthesis Experiments Graph analysis This is my analysis for the investigation in to the affect of light intensity on the rate of photosynthesis to the Canadian pondweed, elodea. In the results the pattern is that when the light intensity is higher the readings are generally higher. On the graph the less the light intensity the lower the gradient of the curve. the equation for the photosynthesis process is; CO2 + 2H2O + Light Energy = =
The Effect of Wavelength on Photosynthesis Rate Aim: To be able to To investigate how different wavelengths (colors) of light affect the photosynthetic rate of the synthetic. I will use a pant that is a pond weed called elodea. I will measure the rate of photosynthesis by measuring the amount of o2 given off in bubbles per minute from the elodea. I will do this by placing the Elodea in a test tube with sodium hydrogen. carbonate then I will vary the light wavelength (color) using colored.
[IMAGE]Carbon dioxide + water Light Energy glucose + oxygen Chlorophyll [IMAGE]6CO2 + 6H20 Light Energy C6 H12 O6 + 6O 2 Chlorophyll Photosynthesis occurs in the leaves of the plant in the palisade layer. Chlorophyll in the cells in the palisade layer absorb light for photosynthesis. The plant releases the oxygen created in photosynthesis back into the air but it uses or stores the glucose for energy, respiration, growth and repair. The leaves and plants are also specially adapted for photosynthesis in their structure and cell alignment. Preliminary Experiment Apparatus * Piece of Elodea Canadensis * Bulb * Voltmeter * Test tube * Beaker * Box *
The Effect of Light Intensity on the Rate of Photosynthesis in an Aquatic Plant Introduction The input variable I will be investigating is light, as light is just one of the 4 factors required in the green-plant process of photosynthesis. Photosynthesis is the process by which green-plants use sunlight, carbon dioxide, water & chlorophyll to produce their own food source. This process is also affected by the temperature surrounding the plant (the species of plant we experimented with, pond weed, photosynthesised best at around 20 degrees centigrade.) Light, temperature & CO2 are known as limiting factors, and each is as important as the next in photosynthesis. Light is the factor that is linked with chlorophyll, a green pigment stored in chloroplasts found in the palisade cells, in the upper layer of leaves.
* Count the number of bubbles seen in 1 minute which is a way of
An Experiment to Investigate the Effect of Light Intensity on the Rate of Photosynthesis. Introduction Photosynthetics take place in the chloroplasts of green plant cells. It can produce simple sugars using carbon dioxide and water causing the release of sugar and oxygen. The chemical equation of photosynthesis is: [ IMAGE ] 6CO 2 + 6H20 C 6 H12 O 6 + 6O2 It has been proven many times that plants need light to be able to photosynthesize, so you can say that without light the plant would neither photosynthesize nor survive.
Figure 17 show the relationship between DO and chlorophyll-a. DO starts at approximately 2 mg/L and chlorophyll-a at 30. As the value of DO is increased, the chlorophyll-a concentration slowly decreases until DO reaches 8 mg/L. Once the value of DO surpasses 8mg/L, chlorophyll-a starts to increase with DO until the maximum predicted value of 37 µg/L is reached when DO is around mg/L. This ‘win-win’ relationship between DO and Chlorophyll-a showed also an inverse effect, that means when DO can increase by the fact that when the algae develop (Chlorophyll-a increasing), the photosynthesis of diverse species of algae release more oxygen to the waterbody.
The structure of chlorophyll involves a hydrophobic tail embedded in the thylakoid membrane which repels water and a porphyrin ring which is a ring of four pyrrols (C4H5N) surrounding a metal ion which absorbs the incoming light energy, in the case of chlorophyll the metal ion is magnesium (Mg2+.) The electrons within the porphyrin ring are delocalised so the molecule has the potential to easily and quickly lose and gain electrons making the structure of chlorophyll ideal for photosynthesis. Chlorophyll is the most abundant photosynthetic pigment, absorbing red and blue wavelengths and reflecting green wavelengths, meaning plants containing chlorophyll appear green. There are many types of chlorophyll, including chlorophyll a, b, c1, c2, d and f. Chlorophyll a is present in all photosynthetic organisms and is the most common pigment with the molecular formula C55H72MgN4O5. Chlorophyll b is found in plants with the molecular formula C55H70MgN4O6, it is less abundant than chlorophyll a. Chlorophyll a and b are often found together as they increase the wavelengths of light absorbed. Chlorophyll c1 (C35H30O5N4Mg) and c2 (C35H28O5N4Mg) are found in algae, they are accessory pigments and have a brown colour. Chlorophyll c is able to absorb yellow and green light (500-600nm) that chlorophyll a
A scientist is a person engaging in a systematic activity to acquire knowledge that portrays and predicts the natural world. The Scientific Method is a process which scientists take to solve a problem or discover new things. Four fundamental part of the scientific method is observation of a phenomenon, the establishment of a hypothesis to explain the phenomena, test hypothesis via accurate experiment, and establish a theory based on repeated verification of the results.