Phosphates are present in many natural waters, such as lakes and streams. Phosphates are essential to aquatic plant growth, but too much phosphate can lead to the growth of algae and results in an algae bloom. Too much algae can cause a decrease in the amount in dissolved oxygen in the water. Oxygen in water is affected in many different ways by phosphates
Phosphorus is usually present in natural waters as phosphate(Mcwelsh and Raintree, 1998). Phosphates are present in fertilizers and laundry detergents and can enter the water from agricultural runoff, industrial waste, and sewage discharge (Outwater,1996) . Phosphates, like nitrates, are plant nutrients (Phosphates, 1997). When too much phosphate enters a water, plant growth flourishes (Phosphates). Phosphates also stimulate the growth of algae which can result in an algae bloom(World Book Encyclopedia,1999). . Algae blooms are easily recognized as layers of green slime, and can eventually cover the water's surface. As the plants and algae grow, they choke out other organisms. These large plant populations produce oxygen in the upper layers of the water but when the plants die and fall to the bottom, they are decomposed by bacteria which use a lot of the dissolved oxygen in the lower layers (Phosphates). Bodies of water with high levels of phosphates usually have high biological oxygen demand (BOD) levels due to the bacteria consuming the organic plant waste and subsequent low dissolved oxygen levels(Hooper,1998).
The addition of large quantities of phosphates to waterways accelerates algae and plant growth in natural waters (Hooper), enhancing eutrophication and depleting the water body of oxygen. This can lead to fish kills and the degradation of habitat with loss
Boyington 5 of species. Large mats of algae can form and in severe cases can completely cover small lakes. Dying plants and algae will create phosphates while decaying, as a result, water can become putrid from decaying organic matter (World Book Encyclopedia). When the concentration of phosphates rises above 100 mg/liter the coagulation processes in drinking water treatment plants may be adversely affected (World Book Encyclopedia). Manmade sources of phosphate include human sewage, agricultural run-off from crops, sewage from animal feedlots, pulp and paper industry, vegetable and fruit processing, chemical and fertilizer manufacturing, and detergents.
Dissolved oxygen is one of the best indicators of the health of a water ecosystem. Dissolved oxygen can range from 0-18 parts per million (ppm), but most natural water systems require 5-6 parts per million to support a diverse population (Phosphates).
Nitrogen and nitrates relate to Hypoxia via the process of eutrophication. Since Nitrogen is a limiting nutrient in most waters, the added input of nitrate causes massive growth in algae. The algae rapidly consume all available N, and once the nutrient is limited again, the alga dies en masse. As the alga decomposes, oxygen is depleted in the water. This lowers dangerously lowers the level of dissolved oxygen in the water, which harms living organisms in the area. Small organisms and organisms that are immobile or unable to escape low-oxygen areas are particularly vulnerable. Hypoxia and resulting “dead zones” are harmful to local fishing and shrimping industries and algal blooms hurt the tourism industry. Hypoxia has lead to a decrease of about 25% in the brown shrimp habitat, forcing shrimping operations further offshore. As the hypoxia issue continues to grow, negative human effects will only increase. Since nitrate runoff from ag. has been proven to be the dominant source of hypoxia, policies could be enacted to effectively deal with “point-source” pollution. This makes enacting environmental policy more easily adapted, possibly included in past policy such as the Clean Water Act.
This is representative of how eutrophication works in an aquatic environment. It shows that the greater the number of blue-green algae then the faster the oxygen depletion
The problem is that too much phosphates in water cause eutrophication. Eutrophication can cause harmful living conditions for the animals and plants that live in the water. It can also affect the organisms who lives in areas surrounding the water. Humans are affect when they consume this water. There is a United States maximum standard for phosphate in drinking water which is 3.0 mg/L.
The algal growths in the lake feed on phosphorus mostly caused by fertilizer runoff from farms and local residences. Microcystin, a toxin that causes liver problems, is produced by the growths have caused major health concerns for wildlife and people using the lake. It is our moral obligation to clean up this mess or it will continue to harm the wildlife and environment in and the lake, as we are the one’s solely responsible for it. Organizations such as the Ohio EPA and Buckeye Lake for Tomorrow, have taken a notice to the pollution of Buckeye Lake and are formulating plans to return the lake to its former glory. Our plan is to provide a short term solution for the lake via the process of dredging, while a much larger and permanent solution is put in
Because of farm fertilizer, an excess quantity of nitrogen and phosphorus can be wash down becoming runoff into rivers. From this, marine algal blooms cause the water to turn green from the chlorophyll (Reed, 2011). Eutrophication then becomes a dilemma in the system causing either an increase of primary production or an expansion of algae. An enormous expansion of phytoplankton on the water’s surface is then established. At the same time the water column is also stratified, meaning things such as the temperature and salinity are not sync from top to bottom. The seasonal warm surface water has a low density forming a saltier layer above while the cooler and more dense water masses near the bottom layer is isolated from the top cutting off oxygen supply from the atmosphere (Overview, 2008).
Methodology: The experimenter used two ten gallon tanks. One tank will be used for the controlled group and the other tank will be used for the experimental group. Each tank will have two pounds of sand spread among the bottom of the tank along with rocks and artificial habitats to add nitrogen to the tanks. To add optimal living conditions for the oceanic life water filtration systems, temperature regulator, circulation systems, and a light to mimic the sun’s rays were added to each tank. At all times both tanks had a temperature of 75 degrees F. This experiment was done over a three month period. The first month was to allow the nitrogen cycle to occur. This allows the fish to be exposed to the water without having stress reactions due to unhealthy living conditions due to the nitrogen. Once the first month was complete six fish was added to both tanks. Two tangs, two damsels, and two clownfish. At first both tanks had a pH level of 8.2, ideal living conditions. After one week the experimental group was exposed to a pH level of 8.6. After two weeks it was raised to 9. Two weeks later it was raised to 9.3. The final raise was done two weeks after making the pH level 9.5. The final week of the experiment the pH lev...
EPA, U. (Producer). Dissolved Oxygen Concentration- Lake Erie Central Basin Hypolimnion [Print Photo]. Retrieved from http://www.epa.gov/greatlakes/lakeerie/erdo8893.gif
The main biotic factors are the plants, fish, and microorganisms. The plants are the main component of an aquaponic system, and they play a significant role in forming a symbiotic ecosystem, the plants also provide water full of nutrients for the fish. Additionally, the fish play a role in forming the ecosystem, but they also assist in the growth of the of the plants by allowing for clean water to be produced from their waste. The bacteria allow for the nitrification cycle to take place, in turn, cleaning the water in the
sources have been indicated as contributing to the phosphorus levels in Lake Carmi, as well as the continuing pollution. These other sources include the septic tanks of the over 300 shoreline properties, reduced and/or diminished buffer zones between roadways and fields near the shorelines of the lake, as well as the eroding ditches and culverts which deliver sediment to the lake.
Pharmaceutical waste seems to be one of the dominant elements that are prevalent in our waters, and other aspects of the environment. These aforementioned elements are largely becoming a concern in today’s society because its effects have proven to be harmful towards our environment, and all of its existing forms of life. Through various ways, whether controllable or uncontrollable, pharmaceutical waste slowly and increasingly multiplies its presence within the environment. Additionally, it eventually trickles down into our waterways and causes a large array of damages. Some of the most common ways that this waste gets into the water includes: disposal through the drainage systems, farming fertilization methods and the maintenance of treatment plants. These methods are self-explanatory through their brief discussions, but it helps decipher whether the disposal of these dangerous wastes are intentional or not.
Above all, these organisms encourage the growth of algae, which absorb dissolved oxygen in the water essential for the survival of fish populations. Occasionally, the decomposition of newly-submerged biomass and sediment further reduce the water's oxygen content. Water sources can literally choke to death as a result of increasing human activity, such as industry and agriculture giving rise to increased nutrient loading.
Farmers apply nutrients such as nitrogen, phosphorus, manure, and potassium in the form of fertilizers to produce a better product for the consumers. When these sources exceed the plants needs or if these nutrients are applied before a heavy rain then the opportunity for these excess to wash into aquatic ecosystems exists.
If there is not enough oxygen in the water, it may lead to the death of many organisms, reduction in their growth or even failure to survive. The pH is a measure of how acidic or alkaline the water. It is defined as the negative log of the hydrogen ion concentration. According to Fondriest Environmental Inc, a well-known Fundamental Environmental organization, the pH scale goes from 0 to 14. As the scale of pH decreases, water becomes more acidic. Many chemical reactions inside aquatic organisms are necessary for survival and growth of organisms. At the extreme ends of the pH scale, (2 or 13) physical damage to gills, exoskeleton, fins, occurs. Changes in pH may alter the concentrations of other substances in water to a more toxic form. Examples: a decrease in pH (below 6) may increase the amount of mercury soluble in water. An increase in pH (above 8.5) enhances the conversion of nontoxic ammonia (ammonium ion) to a toxic form of ammonia (un-ionized ammonia). (Fondriest,
Different pollutants cause different things to happen to plants. Sometimes, water pollution causes an explosion of new plant growth by providing necessary nutrients and food. If there is too much of one species, this can harm or kill plants by changing their growing conditions, such as raising or lowering the environment’s acidity. Plants must take in nutrients from the surrounding environment in order to grow. Nitrogen and phosphorus, in particular, help a plant’s growth because they are important in photosynthesis. This is why they are common ingredients in plant fertilizers. When runoff from farms pollute waterways with nitrogen and fertilizers rich with phosphorus, the water enriched with nutrients often have stunts of growth. Sometimes too much growth can be harmful, as when plant-like algae bloom in polluted waters and create oxygen-depleted dead zones. One solution to this issue is planting seaweed farms in areas that get alot of runoff from farms. This is because seaweed can soak up the excess nutrients and be harvested for people to eat. Marine debris is garbage that ends up in the ocean. Plastic debris that builds up at or near the water’s surface blocks sunlight from fully reaching plants that rely on sunlight to move along the photosynthesis process. By blocking sunlight, marine debris prevent plants from creating glucose at full capacity, which stunts their growth. When chemical pollutants
Oroian, Viman Oana I. "Damaging Effects of Overall Water Pollution." BioFlux (2010): 113-15. Web. 16 Apr. 2014.